A simple Fatal Exception in the React native app
It was a typical Friday night, unfolding as planned. The latest version of our React Native app has just been pushed to production via the Play Console, with a controlled rollout targeting 30% of users. However, our sense of routine was abruptly shattered when a critical alert appeared in the Google Analytics dashboard: the crash-free user rate had plummeted from 99% to 92%. This alarming drop triggered a code-red situation.
Thanks to my incredibly diligent team, we immediately convened on a call, even in the middle of the night. Leveraging the Google Crash Analytics tool, we analyzed the stack trace and tracked user behavior across screens. Despite these insights, we couldn’t pinpoint a consistent pattern to reproduce the crash. The only plausible theory was that an accidental early return statement in the code might be responsible.
Finding the Bug
With no discernible pattern in user behavior, we turned to the version diff in our codebase. Meticulously, we reviewed every line of code and combed through over 150 Git diffs, searching for anomalies. Yet, the elusive early return statement remained undetected. Still, we implemented a series of optimizations and pushed an update to production. While the crash reoccurred 12 hours later, its frequency had significantly dropped.
The breakthrough came unexpectedly. While working on a separate feature, my internet connection briefly went offline, and I happened to have the app open. To my surprise, the fatal error surfaced right before my eyes.
The mistake
const {isConnected} = netState(); if (!isConnected){ return; } const calculateMyView = useCallback(() => { // ...some code },[]);
After extensive debugging, we traced the issue to an early return statement buried deep within one of our components. This subtle bug introduced a crash under specific circumstances: when a user reconnected to a stable internet connection, causing the component to attempt a re-render.
What Happens Internally?
Initial Render
During the initial render, React registers each hook (e.g., useCallback) in the exact order they are called. Hooks are stored in an internal list, indexed by their position in the component tree.
Subsequent Renders
On re-renders, React expects hooks to be called in the same order and at the same positions. If this order changes — for example, due to an early return statement that skips the execution of a hook — the internal list becomes misaligned. React then tries to access a hook (e.g., at position 1) that wasn’t executed, resulting in an error.
The crash, identified as a com.facebook.react.common.JavascriptException, occurred because React was rendering fewer hooks than expected—a classic symptom of skipping stateful logic due to a misplaced early return. This behavior violated React's rules of hooks, which require the order of hooks execution to remain consistent across renders. As a result, any user with this screen on their stack would encounter a crash if the internet connection dropped.
The Fix
const {isConnected} = netState(); if (!isConnected){ return; } const calculateMyView = useCallback(() => { // ...some code },[]);
To resolve the issue, we reordered the logic to ensure the return statement no longer interrupted the execution flow of hooks. By making this adjustment, we adhered to React’s declarative principles, stabilized the re-render process, and eliminated the crash.
This experience was a powerful reminder of the importance of following React’s rules of hooks and avoiding conditional returns within render logic. These principles are critical for maintaining the integrity and stability of React applications.
The above is the detailed content of A simple Fatal Exception in the React native app. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











JavaScript is the cornerstone of modern web development, and its main functions include event-driven programming, dynamic content generation and asynchronous programming. 1) Event-driven programming allows web pages to change dynamically according to user operations. 2) Dynamic content generation allows page content to be adjusted according to conditions. 3) Asynchronous programming ensures that the user interface is not blocked. JavaScript is widely used in web interaction, single-page application and server-side development, greatly improving the flexibility of user experience and cross-platform development.

The latest trends in JavaScript include the rise of TypeScript, the popularity of modern frameworks and libraries, and the application of WebAssembly. Future prospects cover more powerful type systems, the development of server-side JavaScript, the expansion of artificial intelligence and machine learning, and the potential of IoT and edge computing.

Different JavaScript engines have different effects when parsing and executing JavaScript code, because the implementation principles and optimization strategies of each engine differ. 1. Lexical analysis: convert source code into lexical unit. 2. Grammar analysis: Generate an abstract syntax tree. 3. Optimization and compilation: Generate machine code through the JIT compiler. 4. Execute: Run the machine code. V8 engine optimizes through instant compilation and hidden class, SpiderMonkey uses a type inference system, resulting in different performance performance on the same code.

Python is more suitable for beginners, with a smooth learning curve and concise syntax; JavaScript is suitable for front-end development, with a steep learning curve and flexible syntax. 1. Python syntax is intuitive and suitable for data science and back-end development. 2. JavaScript is flexible and widely used in front-end and server-side programming.

JavaScript is the core language of modern web development and is widely used for its diversity and flexibility. 1) Front-end development: build dynamic web pages and single-page applications through DOM operations and modern frameworks (such as React, Vue.js, Angular). 2) Server-side development: Node.js uses a non-blocking I/O model to handle high concurrency and real-time applications. 3) Mobile and desktop application development: cross-platform development is realized through ReactNative and Electron to improve development efficiency.

This article demonstrates frontend integration with a backend secured by Permit, building a functional EdTech SaaS application using Next.js. The frontend fetches user permissions to control UI visibility and ensures API requests adhere to role-base

The shift from C/C to JavaScript requires adapting to dynamic typing, garbage collection and asynchronous programming. 1) C/C is a statically typed language that requires manual memory management, while JavaScript is dynamically typed and garbage collection is automatically processed. 2) C/C needs to be compiled into machine code, while JavaScript is an interpreted language. 3) JavaScript introduces concepts such as closures, prototype chains and Promise, which enhances flexibility and asynchronous programming capabilities.

I built a functional multi-tenant SaaS application (an EdTech app) with your everyday tech tool and you can do the same. First, what’s a multi-tenant SaaS application? Multi-tenant SaaS applications let you serve multiple customers from a sing
