Home > Backend Development > Python Tutorial > How to Melt and Unmelt Pandas DataFrames: A Comprehensive Guide?

How to Melt and Unmelt Pandas DataFrames: A Comprehensive Guide?

Mary-Kate Olsen
Release: 2024-12-24 11:08:13
Original
149 people have browsed it

How to Melt and Unmelt Pandas DataFrames: A Comprehensive Guide?

How do I melt a pandas dataframe?

Melting a dataframe involves transposing the data from a wide format to a long format, where multiple columns are merged and become one.

How do I use melt?

To use melt on a dataframe, you can use the pd.melt() function. This function takes the following arguments:

  • id_vars: Specifies the columns that should be used as identifiers.
  • value_vars: Specifies the columns that should be melted. If not specified, all columns that are not set as id_vars will be melted.
  • var_name: Specifies the name of the column that will store the variable names.
  • value_name: Specifies the name of the column that will store the values.

When do I use melt?

Melting a dataframe is useful when you want to:

  • Reshape the data from a wide format to a long format.
  • Extract specific values from multiple columns.
  • Create a tidy dataset for analysis.

How can I solve specific melt-related problems?

Problem 1: Transposing a dataframe

To transpose a dataframe (e.g., converting columns into rows), use the following code:

df.melt(id_vars=['Name', 'Age'], var_name='Subject', value_name='Grades')
Copy after login

Problem 2: Selecting specific columns for melting

To melt only specific columns, use the value_vars argument, like this:

df.melt(id_vars=['Name', 'Age'], value_vars=['Math'], var_name='Subject', value_name='Grades')
Copy after login

Problem 3: Grouping and ordering melted data

To group and order melted data, you can use groupby() and sort_values() functions:

df.melt(id_vars=['Name', 'Age']) \
 .groupby('Grades') \
 .agg(', '.join) \
 .sort_values('Grades')
Copy after login

Problem 4: Unmelting a melted dataframe

To convert a melted dataframe back to its original format, use the pivot_table() function:

df.pivot_table("Grades", ['Name', 'Age'], 'Subject', aggfunc='first')
Copy after login

Problem 5: Grouping by names and separating subjects and grades

To group by names and separate subjects and grades, merge the columns using melt() and then use groupby():

df.melt(id_vars=['Name', 'Age']) \
 .groupby('Name') \
 .agg(', '.join)
Copy after login

Problem 6: Melting the entire dataframe

To melt the entire dataframe, omit the value_vars argument:

df.melt(var_name='Column', value_name='Value')
Copy after login

The above is the detailed content of How to Melt and Unmelt Pandas DataFrames: A Comprehensive Guide?. For more information, please follow other related articles on the PHP Chinese website!

source:php.cn
Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Latest Articles by Author
Popular Tutorials
More>
Latest Downloads
More>
Web Effects
Website Source Code
Website Materials
Front End Template