Get Rows with Maximum Count in Pandas Groups
Problem:
How to identify rows with the highest value for the 'count' column in a pandas DataFrame when grouping by multiple columns?
Solution:
Step 1: Find Maximum Count for Each Group
To determine the maximum count for each group, use the groupby() and max() functions:
max_counts = df.groupby(['Sp', 'Mt'])['count'].max()
This will create a Series containing the maximum count for each group.
Step 2: Identify Rows with Maximum Count
To get the indices of the rows with maximum count in the original DataFrame, use the transform() method:
idx = df.groupby(['Sp', 'Mt'])['count'].transform(max) == df['count']
This will create a boolean Series where True indicates rows with maximum count.
Step 3: Filter Rows Based on Maximum Count
Finally, filter the DataFrame using the boolean indexing to select only the rows with maximum count:
result = df[idx]
This will return a new DataFrame containing only the rows with the highest value for the 'count' column within each group.
Examples:
Example 1:
df = pd.DataFrame({ 'Sp': ['MM1', 'MM1', 'MM1', 'MM2', 'MM2', 'MM2', 'MM4', 'MM4', 'MM4'], 'Mt': ['S1', 'S1', 'S3', 'S3', 'S4', 'S4', 'S2', 'S2', 'S2'], 'Value': ['a', 'n', 'cb', 'mk', 'bg', 'dgd', 'rd', 'cb', 'uyi'], 'count': [3, 2, 5, 8, 10, 1, 2, 2, 7] })
Output:
Sp Mt Value count 0 MM1 S1 a 3 2 MM1 S3 cb 5 3 MM2 S3 mk 8 4 MM2 S4 bg 10 8 MM4 S2 uyi 7
Example 2:
df = pd.DataFrame({ 'Sp': ['MM2', 'MM2', 'MM4', 'MM4', 'MM4'], 'Mt': ['S4', 'S4', 'S2', 'S2', 'S2'], 'Value': ['bg', 'dgd', 'rd', 'cb', 'uyi'], 'count': [10, 1, 2, 8, 8] })
Output:
Sp Mt Value count 4 MM2 S4 bg 10 7 MM4 S2 cb 8 8 MM4 S2 uyi 8
Note: If multiple rows within a group have the maximum count, all of those rows will be returned.
The above is the detailed content of How to Find Rows with the Maximum Count in Pandas GroupBy Operations?. For more information, please follow other related articles on the PHP Chinese website!