Building a Chess Agent using DQN
I recently tried to implement a DQN based Chess Agent.
Now, anyone who knows how DQNs and Chess works would tell you that's a dumb idea.
And...it was, but as a beginner I enjoyed it nevertheless. In this article I'll share the insights I learned while working on this.
Understanding the Environment.
Before I started implementing the Agent itself, I had to familiarize myself with the environment I'll be using and make a custom wrapper on top of it so that it can interact with the Agent during training.
-
I used the chess environment from the kaggle_environments library.
from kaggle_environments import make env = make("chess", debug=True)
Copy after loginCopy after login
-
I also used Chessnut, which is a lightweight python library that helps parse and validate chess games.
from Chessnut import Game initial_fen = env.state[0]['observation']['board'] game=Game(env.state[0]['observation']['board'])
Copy after loginCopy after login
In this environment, the state of the board is stored in the FEN format.
It provides a compact way to represent all the pieces on the board and the currently active player. However, since I planned on feeding the input to a neural network, I had to modify the representation of the state.
Converting FEN to Matrix format
Since there are 12 different types of pieces on a board, I created 12 channels of 8x8 grids to represent the state of each of those types on the board.
Creating a Wrapper for the Environment
class EnvCust: def __init__(self): self.env = make("chess", debug=True) self.game=Game(env.state[0]['observation']['board']) print(self.env.state[0]['observation']['board']) self.action_space=game.get_moves(); self.obs_space=(self.env.state[0]['observation']['board']) def get_action(self): return Game(self.env.state[0]['observation']['board']).get_moves(); def get_obs_space(self): return fen_to_board(self.env.state[0]['observation']['board']) def step(self,action): reward=0 g=Game(self.env.state[0]['observation']['board']); if(g.board.get_piece(Game.xy2i(action[2:4]))=='q'): reward=7 elif g.board.get_piece(Game.xy2i(action[2:4]))=='n' or g.board.get_piece(Game.xy2i(action[2:4]))=='b' or g.board.get_piece(Game.xy2i(action[2:4]))=='r': reward=4 elif g.board.get_piece(Game.xy2i(action[2:4]))=='P': reward=2 g=Game(self.env.state[0]['observation']['board']); g.apply_move(action) done=False if(g.status==2): done=True reward=10 elif g.status == 1: done = True reward = -5 self.env.step([action,'None']) self.action_space=list(self.get_action()) if(self.action_space==[]): done=True else: self.env.step(['None',random.choice(self.action_space)]) g=Game(self.env.state[0]['observation']['board']); if g.status==2: reward=-10 done=True self.action_space=list(self.get_action()) return self.env.state[0]['observation']['board'],reward,done
The point of this wrapper was to provide a reward policy for the agent and a step function which is used to interact with the environment during training.
Chessnut was useful in getting information like the legal moves possible at current state of the board and also to recognize Checkmates during the game.
I tried to create a reward policy to give positive points for checkmates and taking out enemy pieces while negative points for losing the game.
Creating a Replay Buffer
Replay Buffer is used during the training period to save the (state,action,reward,next state) output by the Q-Network and later used randomly for backpropagation of the Target Network
Auxiliary Functions
Chessnut returns legal action in UCI format which looks like 'a2a3', however to interact with the Neural Network I converted each action into a distinct index using a basic pattern. There are total 64 Squares, so I decided to have 64*64 unique indexes for each move.
I know that not all of the 64*64 moves would be legal, but I could handle legality using Chessnut and the pattern was simple enough.
Neural Network Structure
from kaggle_environments import make env = make("chess", debug=True)
This Neural Network uses the Convolutional Layers to take in the 12 channel input and also uses the valid action indexes to filter out the reward output prediction.
Implementing the Agent
from Chessnut import Game initial_fen = env.state[0]['observation']['board'] game=Game(env.state[0]['observation']['board'])
This was obviously a very basic model which had no chance of actually performing well (And it didn't), but it did help me understand how DQNs work a little better.
The above is the detailed content of Building a Chess Agent using DQN. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

Solution to permission issues when viewing Python version in Linux terminal When you try to view Python version in Linux terminal, enter python...

How to avoid being detected when using FiddlerEverywhere for man-in-the-middle readings When you use FiddlerEverywhere...

When using Python's pandas library, how to copy whole columns between two DataFrames with different structures is a common problem. Suppose we have two Dats...

How to teach computer novice programming basics within 10 hours? If you only have 10 hours to teach computer novice some programming knowledge, what would you choose to teach...

How does Uvicorn continuously listen for HTTP requests? Uvicorn is a lightweight web server based on ASGI. One of its core functions is to listen for HTTP requests and proceed...

Fastapi ...

Using python in Linux terminal...

Understanding the anti-crawling strategy of Investing.com Many people often try to crawl news data from Investing.com (https://cn.investing.com/news/latest-news)...
