In Pandas, filtering a DataFrame to select specific rows based on column values can be done using a combination of comparison operators and Boolean indexing.
To select rows where a column value matches a specific scalar value, use the == operator:
df.loc[df['column_name'] == some_value]
To select rows where a column value is in a list or other iterable value, use the isin operator:
df.loc[df['column_name'].isin(some_values)]
Multiple conditions can be combined using the & operator to select rows that satisfy all conditions:
df.loc[(df['column_name'] >= A) & (df['column_name'] <= B)]
Note that parentheses are necessary to ensure proper operator precedence.
To select rows that do not match a certain value or are not in a specific list, negate the condition using != or ~:
df.loc[df['column_name'] != some_value] df = df.loc[~df['column_name'].isin(some_values)] # In-place replacement requires `loc`
For efficient filtering on frequently used criteria, it can be beneficial to create an index on the column. This allows for faster lookups using df.loc:
df = df.set_index(['B']) df.loc['one']
Consider the following DataFrame:
df = pd.DataFrame({'A': ['foo', 'bar', 'foo', 'bar', 'foo', 'bar', 'foo', 'foo'], 'B': ['one', 'one', 'two', 'three', 'two', 'two', 'one', 'three'], 'C': np.arange(8), 'D': np.arange(8) * 2})
To select rows where column 'A' equals 'foo':
print(df.loc[df['A'] == 'foo'])
To select rows where column 'B' is in ['one', 'three']:
print(df.loc[df['B'].isin(['one','three'])])
To select rows where column 'B' is 'one' or 'two':
df = df.set_index(['B']) print(df.loc[df.index.isin(['one','two'])])
The above is the detailed content of How to Select Specific Rows in a Pandas DataFrame Based on Column Values?. For more information, please follow other related articles on the PHP Chinese website!