


How Does Go Handle Arithmetic Operations on Large Constants at Compile Time?
Arithmetic Operations on Constants in Go: A Deeper Dive
Constants in Go offer remarkable properties, including the ability to perform arithmetic operations on incredibly large values without precision concerns. Although the results must ultimately fit within memory limitations, the mechanisms behind this functionality are intriguing. This article delves into how Go handles constant storage and arithmetic.
Constant Storage
Constants don't exist during runtime; their role is confined to compile-time. Therefore, Go doesn't require arbitrary precision constant representation during execution. When compiling code, the behavior is different:
const Huge = 1e1000
In this example, "Huge" exists in the source code but not in the compiled executable. Instead, a function call to "fmt.Println()" is recorded with a value of type float64. The executable contains no trace of "1e1000."
Arithmetic Operations
According to the Go specification, numeric constants have arbitrary precision, but compilers have implementation freedom. Nonetheless, minimum precision requirements are in place:
- Integer constants: 256 bits
- Floating-point constants: 256-bit mantissa, 32-bit exponent
Go ensures precise constant evaluation by error handling when representation limits are exceeded.
Arbitrary Precision
Despite the spec's arbitrary precision claims, actual implementation may not always adhere. However, the standard library provides the "go/constant" package for representing and manipulating values with arbitrary precision.
At compile time, constant operations are performed with arbitrary precision, but results must be converted to finite types before inclusion in the executable. If this conversion is impossible, compile-time errors occur.
Implementation
The "go/constant" package relies on the "math/big" package for arbitrary precision. "math/big" stores large numbers as digits in a slice, where each digit represents a value in a vast numerical range.
Summary
Constants in Go provide a facade of arbitrary precision during compilation. Internally, compilers ensure compliance with minimum precision requirements. While the executable code operates on finite precision types, constant operations are carried out with arbitrary precision. The "go/constant" package allows developers to handle values with arbitrary precision at the language level, enhancing flexibility and aiding in mathematical calculations.
The above is the detailed content of How Does Go Handle Arithmetic Operations on Large Constants at Compile Time?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



OpenSSL, as an open source library widely used in secure communications, provides encryption algorithms, keys and certificate management functions. However, there are some known security vulnerabilities in its historical version, some of which are extremely harmful. This article will focus on common vulnerabilities and response measures for OpenSSL in Debian systems. DebianOpenSSL known vulnerabilities: OpenSSL has experienced several serious vulnerabilities, such as: Heart Bleeding Vulnerability (CVE-2014-0160): This vulnerability affects OpenSSL 1.0.1 to 1.0.1f and 1.0.2 to 1.0.2 beta versions. An attacker can use this vulnerability to unauthorized read sensitive information on the server, including encryption keys, etc.

The article explains how to use the pprof tool for analyzing Go performance, including enabling profiling, collecting data, and identifying common bottlenecks like CPU and memory issues.Character count: 159

The article discusses writing unit tests in Go, covering best practices, mocking techniques, and tools for efficient test management.

The library used for floating-point number operation in Go language introduces how to ensure the accuracy is...

Queue threading problem in Go crawler Colly explores the problem of using the Colly crawler library in Go language, developers often encounter problems with threads and request queues. �...

The article discusses the go fmt command in Go programming, which formats code to adhere to official style guidelines. It highlights the importance of go fmt for maintaining code consistency, readability, and reducing style debates. Best practices fo

This article introduces a variety of methods and tools to monitor PostgreSQL databases under the Debian system, helping you to fully grasp database performance monitoring. 1. Use PostgreSQL to build-in monitoring view PostgreSQL itself provides multiple views for monitoring database activities: pg_stat_activity: displays database activities in real time, including connections, queries, transactions and other information. pg_stat_replication: Monitors replication status, especially suitable for stream replication clusters. pg_stat_database: Provides database statistics, such as database size, transaction commit/rollback times and other key indicators. 2. Use log analysis tool pgBadg

Backend learning path: The exploration journey from front-end to back-end As a back-end beginner who transforms from front-end development, you already have the foundation of nodejs,...
