Pivoting a DataFrame involves rearranging the data to change the orientation of the data. The rows become columns, and the columns become rows. This can be done in several ways, including using the pivot_table, groupby unstack, set_index unstack, pivot, and crosstab methods of Pandas.
Below is a simple example of a DataFrame that can be pivoted:
import pandas as pd # Create a DataFrame name df df = pd.DataFrame({'Name' : ['Alice', 'Bob', 'Carol', 'Dave'], 'Age' : [20, 25, 30, 35], 'City' : ['New York', 'Boston', 'Chicago', 'Dallas']}) # Pivot the DataFrame using pivot_table method df_pivoted = df.pivot_table(index = 'Name', columns = 'City', values = 'Age') # Display the pivoted DataFrame print(df_pivoted)
Output :
City Boston Chicago Dallas New York Name Alice NaN NaN NaN 20 Bob 25 NaN NaN NaN Carol NaN 30 NaN NaN Dave NaN NaN 35 NaN
The pivot method in pandas is used to transform the data from the long format to the wide format by swapping rows and columns of a data frame. You can select any of the methods explained above according to your need as all these methods are quite useful in making sense of complex level data. I hope it clarified your doubts about data frame pivoting! If you encounter any issues, feel free to continue this discussion.
The above is the detailed content of How Can I Pivot a Pandas DataFrame Using Different Methods?. For more information, please follow other related articles on the PHP Chinese website!