How to Efficiently Decode Large Streaming JSON in Go?
How to Decode Streaming JSON in Go
When working with large JSON responses, it's not ideal to load the entire response into memory before decoding it. Using the ioutil.ReadAll function can lead to memory issues when dealing with large JSON payloads. This article will explore how to decode JSON data on the fly as it streams in, avoiding memory consumption problems.
JSON Streaming with json.Decoder
The json.Decoder in the Go standard library provides the ability to parse JSON streams incrementally. This is achieved through the Decoder.Token() method.
The Decoder.Token() method returns the next token in the JSON stream without consuming it. This allows for selective parsing of JSON data and event-driven processing.
Handling JSON Structures
Event-driven parsing requires a state machine to track the current position within the JSON structure. We can use this state machine to process different parts of the JSON data as they appear in the stream.
For example, let's say we receive a JSON response with the following format:
{ "property1": "value1", "property2": "value2", "array": [ { "item1": "value3" }, { "item2": "value4" } ] }
We can write a function that incrementally parses this JSON stream and processes the array element separately:
func processJSONStream(stream io.Reader) { decoder := json.NewDecoder(stream) state := "start" for decoder.More() { token, err := decoder.Token() if err != nil { log.Fatal(err) } switch state { case "start": if delim, ok := token.(json.Delim); ok && delim == '{' { state = "object" } else { log.Fatal("Expected object") } case "object": switch t := token.(type) { case json.Delim: if t == '}' { // End of object state = "end" } else if t == ',' { // Next property continue } else if t == '[' { // Array found state = "array" } if t == ':' { // Property value expected state = "prop_value" } case string: // Property name fmt.Printf("Property '%s'\n", t) default: // Property value fmt.Printf("Value: %v\n", t) } case "array": if delim, ok := token.(json.Delim); ok && delim == ']' { // End of array state = "object" } else if token == json.Delim('{') { // Array item object fmt.Printf("Item:\n") state = "item" } case "item": switch t := token.(type) { case json.Delim: if t == '}' { // End of item object fmt.Printf("\n") state = "array" } else if t == ',' { // Next item property fmt.Printf(",\n") continue } case string: // Item property name fmt.Printf("\t'%s'", t) default: // Item property value fmt.Printf(": %v", t) } case "prop_value": // Decode the property value var value interface{} if err := decoder.Decode(&value); err != nil { log.Fatal(err) } fmt.Printf("Value: %v\n", value) state = "object" } } }
When called with the JSON response, this function will print the property names and values, as well as the individual items within the array.
Conclusion
Using the json.Decoder and Decoder.Token() in event-driven processing allows us to parse large JSON responses incrementally, avoiding memory consumption issues and enabling efficient processing of data as it streams in.
The above is the detailed content of How to Efficiently Decode Large Streaming JSON in Go?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

OpenSSL, as an open source library widely used in secure communications, provides encryption algorithms, keys and certificate management functions. However, there are some known security vulnerabilities in its historical version, some of which are extremely harmful. This article will focus on common vulnerabilities and response measures for OpenSSL in Debian systems. DebianOpenSSL known vulnerabilities: OpenSSL has experienced several serious vulnerabilities, such as: Heart Bleeding Vulnerability (CVE-2014-0160): This vulnerability affects OpenSSL 1.0.1 to 1.0.1f and 1.0.2 to 1.0.2 beta versions. An attacker can use this vulnerability to unauthorized read sensitive information on the server, including encryption keys, etc.

Backend learning path: The exploration journey from front-end to back-end As a back-end beginner who transforms from front-end development, you already have the foundation of nodejs,...

The library used for floating-point number operation in Go language introduces how to ensure the accuracy is...

Queue threading problem in Go crawler Colly explores the problem of using the Colly crawler library in Go language, developers often encounter problems with threads and request queues. �...

Under the BeegoORM framework, how to specify the database associated with the model? Many Beego projects require multiple databases to be operated simultaneously. When using Beego...

The difference between string printing in Go language: The difference in the effect of using Println and string() functions is in Go...

The problem of using RedisStream to implement message queues in Go language is using Go language and Redis...

What should I do if the custom structure labels in GoLand are not displayed? When using GoLand for Go language development, many developers will encounter custom structure tags...
