Design patterns are time tested solutions to recurring problems in software design. They enhance code readability, scalability, and maintainability. TypeScript, with its strong typing and modern JavaScript foundation, is an excellent language to implement these patterns effectively.
This article delves into advanced and commonly used design patterns, explaining their concepts, TypeScript implementations, and practical use cases. Whether you're a seasoned developer or exploring TypeScript, you'll gain valuable insights into building robust applications.
Design patterns are reusable solutions to common design problems. They are categorized into three main types:
1. Singleton Pattern
Ensures that a class has only one instance throughout the application.
Use Case: Managing global state or configurations.
Implementation:
class Singleton { private static instance: Singleton; private constructor() {} static getInstance(): Singleton { if (!Singleton.instance) { Singleton.instance = new Singleton(); } return Singleton.instance; } public showMessage(): void { console.log("Hello, Singleton!"); } } // Usage const singleton1 = Singleton.getInstance(); const singleton2 = Singleton.getInstance(); console.log(singleton1 === singleton2); // true
2. Factory Method
Creates objects without specifying their exact class.
Use Case: When the object creation logic needs to be abstracted.
Implementation:
interface Product { operation(): string; } class ConcreteProductA implements Product { operation(): string { return "Product A"; } } class ConcreteProductB implements Product { operation(): string { return "Product B"; } } abstract class Creator { abstract factoryMethod(): Product; someOperation(): string { const product = this.factoryMethod(); return `Creator: ${product.operation()}`; } } class ConcreteCreatorA extends Creator { factoryMethod(): Product { return new ConcreteProductA(); } } class ConcreteCreatorB extends Creator { factoryMethod(): Product { return new ConcreteProductB(); } } // Usage const creatorA = new ConcreteCreatorA(); console.log(creatorA.someOperation());
3. Builder Pattern
Separates object construction from its representation.
Use Case: Construct complex objects step-by-step.
Implementation:
class Product { private parts: string[] = []; addPart(part: string): void { this.parts.push(part); } listParts(): void { console.log(`Product parts: ${this.parts.join(", ")}`); } } class Builder { private product = new Product(); reset(): void { this.product = new Product(); } addPartA(): void { this.product.addPart("Part A"); } addPartB(): void { this.product.addPart("Part B"); } getProduct(): Product { const result = this.product; this.reset(); return result; } } // Usage const builder = new Builder(); builder.addPartA(); builder.addPartB(); const product = builder.getProduct(); product.listParts();
1. Adapter Pattern
Converts the interface of a class into another interface.
Use Case: Integrating third-party libraries.
Implementation:
class OldSystem { oldRequest(): string { return "Old System"; } } class NewSystem { newRequest(): string { return "New System"; } } class Adapter extends OldSystem { private adaptee: NewSystem; constructor(adaptee: NewSystem) { super(); this.adaptee = adaptee; } oldRequest(): string { return this.adaptee.newRequest(); } } // Usage const adaptee = new NewSystem(); const adapter = new Adapter(adaptee); console.log(adapter.oldRequest());
2. Composite Pattern
Composes objects into tree structures to represent part-whole hierarchies.
Use Case: Managing hierarchical data.
Implementation:
abstract class Component { abstract operation(): string; } class Leaf extends Component { operation(): string { return "Leaf"; } } class Composite extends Component { private children: Component[] = []; add(component: Component): void { this.children.push(component); } operation(): string { const results = this.children.map(child => child.operation()); return `Composite(${results.join(", ")})`; } } // Usage const leaf = new Leaf(); const composite = new Composite(); composite.add(leaf); console.log(composite.operation());
1. Observer Pattern
Defines a dependency between objects so that one object changes state, all dependents are notified.
Use Case: Event systems.
Implementation:
interface Observer { update(message: string): void; } class Subject { private observers: Observer[] = []; attach(observer: Observer): void { this.observers.push(observer); } notify(message: string): void { this.observers.forEach(observer => observer.update(message)); } } class ConcreteObserver implements Observer { update(message: string): void { console.log(`Received message: ${message}`); } } // Usage const subject = new Subject(); const observer1 = new ConcreteObserver(); const observer2 = new ConcreteObserver(); subject.attach(observer1); subject.attach(observer2); subject.notify("Event occurred!");
2. Strategy Pattern
Defines a family of algorithms and makes them interchangeable.
Use Case: Payment methods or sorting algorithms.
Implementation:
class Singleton { private static instance: Singleton; private constructor() {} static getInstance(): Singleton { if (!Singleton.instance) { Singleton.instance = new Singleton(); } return Singleton.instance; } public showMessage(): void { console.log("Hello, Singleton!"); } } // Usage const singleton1 = Singleton.getInstance(); const singleton2 = Singleton.getInstance(); console.log(singleton1 === singleton2); // true
Design patterns are powerful tools for building scalable, maintainable applications. TypeScript's robust type system and modern syntax provide an excellent platform for implementing these patterns effectively. By understanding and applying these design patterns, developers can create well architected software solutions that stand the test of time.
Catch you in the next article, lad!!!
My personal website: https://shafayet.zya.me
Horrible setup?
The above is the detailed content of Advanced Design Patterns in TypeScript. For more information, please follow other related articles on the PHP Chinese website!