Implementing malloc() and free() — splitting large blocks
In the previous post of this series, we saw how the order in which we choose memory blocks to reuse can lead to greater or lesser memory consumption, and we changed our functions to avoid this waste. But we need to solve another, even more serious, problem: sometimes, a very large memory block can occupy the space that several smaller blocks could use. Consider the case below, where we allocate a large chunk of memory, deallocate it, and then allocate two much smaller blocks:
void *ptr1 = abmalloc(128); void *ptr2 = abmalloc(8); abfree(ptr1); void *ptr3 = abmalloc(8); void *ptr4 = abmalloc(8);
Here, we have a free 128-byte memory block, and when we allocate a block of just 8 bytes, all 128 bytes become unavailable. When we allocate another 8-byte block, the heap needs to grow again. This is not an efficient use of memory.
There are at least two popular solutions for this case. One, more efficient, is to use bins: lists that group blocks by size. This is a more sophisticated and efficient approach, but more complex. Another option, simpler, is to find a large block and split it into smaller blocks. We’ll follow this approach.
But remember: simpler doesn’t exactly mean simple ;-)
Initial Refactoring
Before we begin, let’s do a small refactoring. Currently, the header_new() function does two things: it allocates more memory for a new block and initializes its header, setting the metadata and pointers to the previous block. The part of initializing the header might be useful, so let’s extract it. We’ll create two new functions to improve readability:
- The header_plug() function, which “plugs” the initialized block to the previous and next blocks.
- The header_init() function, which sets the initial values of the block’s metadata (size and availability).
Here’s how they look:
void header_init(Header *header, size_t size, bool available) { header->size = size; header->available = available; } void header_plug(Header *header, Header *previous, Header *next) { header->previous = previous; if (previous != NULL) { previous->next = header; } header->next = next; if (next != NULL) { next->previous = header; } }
Now, we just need to modify header_new() to use these new functions:
Header *header_new(Header *previous, size_t size, bool available) { Header *header = sbrk(sizeof(Header) + size); header_init(header, size, available); header_plug(header, previous, NULL); return header; }
(Additionally, we can remove the line last->previous->next = last; from the abmalloc() function, since header_plug() now takes care of that.)
Splitting Blocks
With these tools in hand, let’s create the header_split() function. Given a header and a minimum required size, this function splits the memory block into two if the original block is large enough to contain
- the required size,
- a new header for the new block, and
- a bit of extra memory.
First, we check if the block is large enough:
Header *header_split(Header *header, size_t size) { size_t original_size = header->size; if (original_size >= size + sizeof(Header)) {
If this condition is met, we split the block. First, we reduce the size of the current block by subtracting the size of a header and the space requested by abmalloc:
void *ptr1 = abmalloc(128); void *ptr2 = abmalloc(8); abfree(ptr1); void *ptr3 = abmalloc(8); void *ptr4 = abmalloc(8);
This leaves a memory space after the current block, which we’ll use to create the new block. We calculate the pointer for this new block:
void header_init(Header *header, size_t size, bool available) { header->size = size; header->available = available; } void header_plug(Header *header, Header *previous, Header *next) { header->previous = previous; if (previous != NULL) { previous->next = header; } header->next = next; if (next != NULL) { next->previous = header; } }
Now that we have the pointer to the new block, we initialize its header with header_init():
Header *header_new(Header *previous, size_t size, bool available) { Header *header = sbrk(sizeof(Header) + size); header_init(header, size, available); header_plug(header, previous, NULL); return header; }
And we connect the new block to the previous and next blocks using header_plug():
Header *header_split(Header *header, size_t size) { size_t original_size = header->size; if (original_size >= size + sizeof(Header)) {
If the original block was the last one, the new block will now be the last, so we update the last pointer:
header->size = original_size - size - sizeof(Header);
Finally, we return the new block:
Header *new_header = header + sizeof(Header) + header->size;
If the original block is not large enough, we simply return the original block:
header_init(new_header, size, true);
Updating abmalloc()
Now, we just need to go back to the abmalloc() function, and in the place where we find a usable block, we invoke header_split() to try to split it:
header_plug(new_header, header, header->next);
If the block can be split, the new block will be returned. Otherwise, the original block will be kept and returned as before.
Note on Block Splitting
Notice that we created the new block at the end of the original block. We could have created it at the beginning, but by creating the new used block at the end, the new free block stays closer to older blocks. This way, it will be found first the next time abmalloc() is invoked.
Splitting large memory blocks is a step forward, but there’s an opposite problem: small memory blocks can cause fragmentation, making larger requests cause the heap to grow. We’ll see how to solve this in the next post.
The above is the detailed content of Implementing malloc() and free() — splitting large blocks. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

C language data structure: The data representation of the tree and graph is a hierarchical data structure consisting of nodes. Each node contains a data element and a pointer to its child nodes. The binary tree is a special type of tree. Each node has at most two child nodes. The data represents structTreeNode{intdata;structTreeNode*left;structTreeNode*right;}; Operation creates a tree traversal tree (predecision, in-order, and later order) search tree insertion node deletes node graph is a collection of data structures, where elements are vertices, and they can be connected together through edges with right or unrighted data representing neighbors.

The truth about file operation problems: file opening failed: insufficient permissions, wrong paths, and file occupied. Data writing failed: the buffer is full, the file is not writable, and the disk space is insufficient. Other FAQs: slow file traversal, incorrect text file encoding, and binary file reading errors.

C language functions are the basis for code modularization and program building. They consist of declarations (function headers) and definitions (function bodies). C language uses values to pass parameters by default, but external variables can also be modified using address pass. Functions can have or have no return value, and the return value type must be consistent with the declaration. Function naming should be clear and easy to understand, using camel or underscore nomenclature. Follow the single responsibility principle and keep the function simplicity to improve maintainability and readability.

The C language function name definition includes: return value type, function name, parameter list and function body. Function names should be clear, concise and unified in style to avoid conflicts with keywords. Function names have scopes and can be used after declaration. Function pointers allow functions to be passed or assigned as arguments. Common errors include naming conflicts, mismatch of parameter types, and undeclared functions. Performance optimization focuses on function design and implementation, while clear and easy-to-read code is crucial.

The calculation of C35 is essentially combinatorial mathematics, representing the number of combinations selected from 3 of 5 elements. The calculation formula is C53 = 5! / (3! * 2!), which can be directly calculated by loops to improve efficiency and avoid overflow. In addition, understanding the nature of combinations and mastering efficient calculation methods is crucial to solving many problems in the fields of probability statistics, cryptography, algorithm design, etc.

C language functions are reusable code blocks. They receive input, perform operations, and return results, which modularly improves reusability and reduces complexity. The internal mechanism of the function includes parameter passing, function execution, and return values. The entire process involves optimization such as function inline. A good function is written following the principle of single responsibility, small number of parameters, naming specifications, and error handling. Pointers combined with functions can achieve more powerful functions, such as modifying external variable values. Function pointers pass functions as parameters or store addresses, and are used to implement dynamic calls to functions. Understanding function features and techniques is the key to writing efficient, maintainable, and easy to understand C programs.

Algorithms are the set of instructions to solve problems, and their execution speed and memory usage vary. In programming, many algorithms are based on data search and sorting. This article will introduce several data retrieval and sorting algorithms. Linear search assumes that there is an array [20,500,10,5,100,1,50] and needs to find the number 50. The linear search algorithm checks each element in the array one by one until the target value is found or the complete array is traversed. The algorithm flowchart is as follows: The pseudo-code for linear search is as follows: Check each element: If the target value is found: Return true Return false C language implementation: #include#includeintmain(void){i

C language multithreading programming guide: Creating threads: Use the pthread_create() function to specify thread ID, properties, and thread functions. Thread synchronization: Prevent data competition through mutexes, semaphores, and conditional variables. Practical case: Use multi-threading to calculate the Fibonacci number, assign tasks to multiple threads and synchronize the results. Troubleshooting: Solve problems such as program crashes, thread stop responses, and performance bottlenecks.
