


How Can I Safely Collect Data from Multiple Go Threads While Preventing Race Conditions?
Safe Data Collection from Multiple Threads in Go
Concurrently accessing shared data across multiple threads without proper synchronization can lead to undefined behavior in Go. This is especially critical for scenarios involving both read and write operations.
Concurrent Access Risks
In your case, multiple worker threads are running in parallel, while the main thread periodically seeks to collect values from these workers. If left unchecked, race conditions can arise, where multiple threads attempt to access the same data simultaneously, potentially corrupting it.
Synchronization Options
To prevent concurrent access issues, you need to employ synchronization mechanisms. One commonly used approach is channels, which facilitate secure data exchange between goroutines. However, in your case, channels may not be the most efficient option as you are seeking to retrieve data from the workers rather than having them send it proactively.
Mutex-Protected Data
A more suitable solution involves protecting the shared data structure using a synchronization primitive such as a sync.RWMutex. This lock ensures that only one thread can modify the data at a time while allowing multiple threads to access it concurrently for reading.
Implementation Example
Here's a simplified implementation using a sync.RWMutex:
type Worker struct { iterMu sync.RWMutex iter int } func (w *Worker) Iter() int { w.iterMu.RLock() defer w.iterMu.RUnlock() return w.iter } func (w *Worker) setIter(n int) { w.iterMu.Lock() w.iter = n w.iterMu.Unlock() }
In this example, the worker's Iter method acquires a read lock and returns the current iteration count. The setIter method acquires a write lock, updates the iteration count, and releases the lock.
Alternatively, you could use the sync/atomic package to provide atomic operations on an integer counter, eliminating the need for explicit locking:
type Worker struct { iter int64 } func (w *Worker) Iter() int64 { return atomic.LoadInt64(&w.iter) } func (w *Worker) setIter(n int64) { atomic.StoreInt64(&w.iter, n) }
By using proper synchronization techniques, you can safely collect data from multiple threads in Go, ensuring data integrity and preventing race conditions.
The above is the detailed content of How Can I Safely Collect Data from Multiple Go Threads While Preventing Race Conditions?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics





OpenSSL, as an open source library widely used in secure communications, provides encryption algorithms, keys and certificate management functions. However, there are some known security vulnerabilities in its historical version, some of which are extremely harmful. This article will focus on common vulnerabilities and response measures for OpenSSL in Debian systems. DebianOpenSSL known vulnerabilities: OpenSSL has experienced several serious vulnerabilities, such as: Heart Bleeding Vulnerability (CVE-2014-0160): This vulnerability affects OpenSSL 1.0.1 to 1.0.1f and 1.0.2 to 1.0.2 beta versions. An attacker can use this vulnerability to unauthorized read sensitive information on the server, including encryption keys, etc.

The library used for floating-point number operation in Go language introduces how to ensure the accuracy is...

Queue threading problem in Go crawler Colly explores the problem of using the Colly crawler library in Go language, developers often encounter problems with threads and request queues. �...

Backend learning path: The exploration journey from front-end to back-end As a back-end beginner who transforms from front-end development, you already have the foundation of nodejs,...

This article introduces a variety of methods and tools to monitor PostgreSQL databases under the Debian system, helping you to fully grasp database performance monitoring. 1. Use PostgreSQL to build-in monitoring view PostgreSQL itself provides multiple views for monitoring database activities: pg_stat_activity: displays database activities in real time, including connections, queries, transactions and other information. pg_stat_replication: Monitors replication status, especially suitable for stream replication clusters. pg_stat_database: Provides database statistics, such as database size, transaction commit/rollback times and other key indicators. 2. Use log analysis tool pgBadg

The problem of using RedisStream to implement message queues in Go language is using Go language and Redis...

The difference between string printing in Go language: The difference in the effect of using Println and string() functions is in Go...

Under the BeegoORM framework, how to specify the database associated with the model? Many Beego projects require multiple databases to be operated simultaneously. When using Beego...
