Building Resilient APIs: Mistakes I Made and How I Overcame Them
APIs are the backbone of modern applications. When I first started building APIs with Spring Boot, I was so focused on delivering features that I overlooked one crucial aspect: resilience. I learned the hard way that an API’s ability to gracefully handle failures and adapt to different conditions is what makes it truly dependable. Let me take you through some mistakes I made along the way and how I fixed them. Hopefully, you can avoid these pitfalls in your own journey.
Mistake 1: Ignoring Timeout Configurations
What Happened: In one of my early projects, I built an API that made external calls to third-party services. I assumed those services would always respond quickly and didn’t bother setting timeouts. Everything seemed fine until traffic increased, and the third-party services started slowing down. My API would just hang indefinitely, waiting for a response.
Impact: The API’s responsiveness took a nosedive. Dependent services started failing, and users faced long delays—some even got the dreaded 500 Internal Server Error.
How I Fixed It: That’s when I realized the importance of timeout configurations. Here’s how I fixed it using Spring Boot:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 |
|
This configuration not only sets appropriate timeouts but also includes logging to help monitor external service performance.
Mistake 2: Not Implementing Circuit Breakers
What Happened: There was a time when a our internal service we depended on went down for several hours. My API didn’t handle the situation gracefully. Instead, it kept retrying those failing requests, adding more load to the already stressed system.
Cascading failures are one of the most challenging problems in distributed systems. When one service fails, it can create a domino effect that brings down the entire system.
Impact: The repeated retries overwhelmed the system, slowing down other parts of the application and affecting all users.
How I Fixed It: That’s when I discovered the circuit breaker pattern. Using Spring Cloud Resilience4j, I was able to break the cycle.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
|
This simple addition prevented my API from overwhelming itself, internal service or the third-party service, ensuring system stability.
Mistake 3: Weak Error Handling
What Happened: Early on, I didn’t put much thought into error handling. My API either threw generic errors (like HTTP 500 for everything) or exposed sensitive internal details in stack traces.
Impact: Users were confused about what went wrong, and the exposure of internal details created potential security risks.
How I Fixed It: I decided to centralize error handling using Spring’s @ControllerAdvice annotation. Here’s what I did:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 |
|
This made error messages clear and secure, helping both users and developers.
Mistake 4: Neglecting Rate Limiting
What Happened: One fine day, we launched a promotional campaign, and the traffic to our API skyrocketed. While this was great news for the business, some users started spamming the API with requests, starving others of resources.
Impact: Performance degraded for everyone, and we received a flood of complaints.
How I Fixed It: To handle this, I implemented rate limiting using Bucket4j with Redis. Here’s an example:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
|
This ensured fair usage and protected the API from abuse.
Mistake 5: Overlooking Observability
What Happened: Whenever something went wrong in production, it was like searching for a needle in a haystack. I didn’t have proper logging or metrics in place, so diagnosing issues took way longer than it should have.
Impact: Troubleshooting became a nightmare, delaying issue resolution and frustrating users.
How I Fixed It: I added Spring Boot Actuator for health checks and integrated Prometheus with Grafana for metrics visualization:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 |
|
I also implemented structured logging using the ELK Stack (Elasticsearch, Logstash, Kibana). This made logs far more actionable.
Takeaways
Building resilient APIs is a journey, and mistakes are part of the process. Here are the key lessons I learned:
- Always configure timeouts for external calls.
- Use circuit breakers to prevent cascading failures.
- Centralize error handling to make it clear and secure.
- Implement rate limiting to manage traffic spikes.
These changes transformed how I approach API development. If you’ve faced similar challenges or have other tips, I’d love to hear your stories!
End Note: Remember that resilience is not a feature you add—it's a characteristic you build into your system from the ground up. Each of these components plays a crucial role in creating APIs that not only work but continue to work reliably under stress.
The above is the detailed content of Building Resilient APIs: Mistakes I Made and How I Overcame Them. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

Troubleshooting and solutions to the company's security software that causes some applications to not function properly. Many companies will deploy security software in order to ensure internal network security. ...

Field mapping processing in system docking often encounters a difficult problem when performing system docking: how to effectively map the interface fields of system A...

When using MyBatis-Plus or other ORM frameworks for database operations, it is often necessary to construct query conditions based on the attribute name of the entity class. If you manually every time...

Solutions to convert names to numbers to implement sorting In many application scenarios, users may need to sort in groups, especially in one...

Start Spring using IntelliJIDEAUltimate version...

Conversion of Java Objects and Arrays: In-depth discussion of the risks and correct methods of cast type conversion Many Java beginners will encounter the conversion of an object into an array...

Detailed explanation of the design of SKU and SPU tables on e-commerce platforms This article will discuss the database design issues of SKU and SPU in e-commerce platforms, especially how to deal with user-defined sales...

When using TKMyBatis for database queries, how to gracefully get entity class variable names to build query conditions is a common problem. This article will pin...
