Table of Contents
Unraveling the Enigma: std::make_pair Conundrum with Explicit Template Parameters
Error at Hand
Unveiling the Mystery
Under the Hood
The Crucial Role of Rvalue References
Why It Works Without Explicit Arguments
Conclusion
Home Backend Development C++ Why Does `std::make_pair` Fail with Explicit Template Arguments in C 11?

Why Does `std::make_pair` Fail with Explicit Template Arguments in C 11?

Jan 05, 2025 am 02:03 AM

Why Does `std::make_pair` Fail with Explicit Template Arguments in C  11?

Unraveling the Enigma: std::make_pair Conundrum with Explicit Template Parameters

In the realm of C , the std::make_pair function has risen to prominence as a convenient tool for creating pairs. However, a peculiar issue arises when attempting to employ this function with explicitly specified template parameters in C 11. This article delves into the enigmatic behavior behind this situation.

Error at Hand

Consider the following code snippet that attempts to create a pair of a string and an integer with explicit template arguments:

1

std::pair<std::string, int>& b = std::make_pair<std::string, int>(s, 7);

Copy after login

Instead of the expected compilation success, a cryptic error message emerges:

1

error: no matching function for call to 'make_pair(std::string&, int)'

Copy after login

Unveiling the Mystery

The source of this error lies in the incorrect usage of std::make_pair. The function was designed to infer the template parameters based on the provided arguments. Explicitly stating these parameters hinders this inference process.

Under the Hood

The C 11 implementation of std::make_pair takes two parameters of type T&& and U&&, where T and U are template type parameters. When explicitly specifying the template arguments, as seen in the problematic code, no argument deduction occurs. Instead, the specified types are directly substituted into the template declaration, resulting in the following:

1

make_pair(std::string&& argT, int&& argU);

Copy after login

The Crucial Role of Rvalue References

Note that both parameters in the explicitly specified template are rvalue references (&&), which can only bind to rvalue expressions. In the provided code, s is an lvalue (not a temporary and not being moved). Consequently, the function template fails to match the arguments, leading to the compilation error.

Why It Works Without Explicit Arguments

When omitting the explicit template arguments, argument deduction takes place. Due to the special nature of rvalue reference parameters in templates (reference collapsing), an rvalue reference parameter of type A&&, where A is a template type parameter, can bind to any type of A. Whether A is an lvalue, rvalue, qualified or not, an A&& can bind to it.

In the example code, s is an lvalue of type std::string and 7 is an rvalue of type int. The compiler deduces T to be std::string& and U to be int, allowing s and 7 to bind successfully to the inferred parameter types.

Conclusion

To avoid such errors, adhere to the following principle: If a template argument can be deduced from the function arguments, allow the compiler to perform the deduction. Explicitly providing arguments is often unnecessary and can lead to unexpected results. By harnessing the power of argument deduction, programmers can simplify their code and enhance its readability while maintaining its correctness.

The above is the detailed content of Why Does `std::make_pair` Fail with Explicit Template Arguments in C 11?. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Hot Topics

Java Tutorial
1657
14
PHP Tutorial
1257
29
C# Tutorial
1230
24
C# vs. C  : History, Evolution, and Future Prospects C# vs. C : History, Evolution, and Future Prospects Apr 19, 2025 am 12:07 AM

The history and evolution of C# and C are unique, and the future prospects are also different. 1.C was invented by BjarneStroustrup in 1983 to introduce object-oriented programming into the C language. Its evolution process includes multiple standardizations, such as C 11 introducing auto keywords and lambda expressions, C 20 introducing concepts and coroutines, and will focus on performance and system-level programming in the future. 2.C# was released by Microsoft in 2000. Combining the advantages of C and Java, its evolution focuses on simplicity and productivity. For example, C#2.0 introduced generics and C#5.0 introduced asynchronous programming, which will focus on developers' productivity and cloud computing in the future.

C   and System Programming: Low-Level Control and Hardware Interaction C and System Programming: Low-Level Control and Hardware Interaction Apr 06, 2025 am 12:06 AM

C is suitable for system programming and hardware interaction because it provides control capabilities close to hardware and powerful features of object-oriented programming. 1)C Through low-level features such as pointer, memory management and bit operation, efficient system-level operation can be achieved. 2) Hardware interaction is implemented through device drivers, and C can write these drivers to handle communication with hardware devices.

The Future of C   and XML: Emerging Trends and Technologies The Future of C and XML: Emerging Trends and Technologies Apr 10, 2025 am 09:28 AM

The future development trends of C and XML are: 1) C will introduce new features such as modules, concepts and coroutines through the C 20 and C 23 standards to improve programming efficiency and security; 2) XML will continue to occupy an important position in data exchange and configuration files, but will face the challenges of JSON and YAML, and will develop in a more concise and easy-to-parse direction, such as the improvements of XMLSchema1.1 and XPath3.1.

The Continued Use of C  : Reasons for Its Endurance The Continued Use of C : Reasons for Its Endurance Apr 11, 2025 am 12:02 AM

C Reasons for continuous use include its high performance, wide application and evolving characteristics. 1) High-efficiency performance: C performs excellently in system programming and high-performance computing by directly manipulating memory and hardware. 2) Widely used: shine in the fields of game development, embedded systems, etc. 3) Continuous evolution: Since its release in 1983, C has continued to add new features to maintain its competitiveness.

C   Multithreading and Concurrency: Mastering Parallel Programming C Multithreading and Concurrency: Mastering Parallel Programming Apr 08, 2025 am 12:10 AM

C The core concepts of multithreading and concurrent programming include thread creation and management, synchronization and mutual exclusion, conditional variables, thread pooling, asynchronous programming, common errors and debugging techniques, and performance optimization and best practices. 1) Create threads using the std::thread class. The example shows how to create and wait for the thread to complete. 2) Synchronize and mutual exclusion to use std::mutex and std::lock_guard to protect shared resources and avoid data competition. 3) Condition variables realize communication and synchronization between threads through std::condition_variable. 4) The thread pool example shows how to use the ThreadPool class to process tasks in parallel to improve efficiency. 5) Asynchronous programming uses std::as

C   and XML: Exploring the Relationship and Support C and XML: Exploring the Relationship and Support Apr 21, 2025 am 12:02 AM

C interacts with XML through third-party libraries (such as TinyXML, Pugixml, Xerces-C). 1) Use the library to parse XML files and convert them into C-processable data structures. 2) When generating XML, convert the C data structure to XML format. 3) In practical applications, XML is often used for configuration files and data exchange to improve development efficiency.

C   Deep Dive: Mastering Memory Management, Pointers, and Templates C Deep Dive: Mastering Memory Management, Pointers, and Templates Apr 07, 2025 am 12:11 AM

C's memory management, pointers and templates are core features. 1. Memory management manually allocates and releases memory through new and deletes, and pay attention to the difference between heap and stack. 2. Pointers allow direct operation of memory addresses, and use them with caution. Smart pointers can simplify management. 3. Template implements generic programming, improves code reusability and flexibility, and needs to understand type derivation and specialization.

The C   Community: Resources, Support, and Development The C Community: Resources, Support, and Development Apr 13, 2025 am 12:01 AM

C Learners and developers can get resources and support from StackOverflow, Reddit's r/cpp community, Coursera and edX courses, open source projects on GitHub, professional consulting services, and CppCon. 1. StackOverflow provides answers to technical questions; 2. Reddit's r/cpp community shares the latest news; 3. Coursera and edX provide formal C courses; 4. Open source projects on GitHub such as LLVM and Boost improve skills; 5. Professional consulting services such as JetBrains and Perforce provide technical support; 6. CppCon and other conferences help careers

See all articles