How Can I Pivot Data Using LINQ?
Pivot Data Using LINQ
In data processing, pivoting refers to transforming data from a format with multiple columns and rows to a format with multiple rows and columns. Here's how you can perform data pivoting using LINQ:
Consider a collection of items containing an TypeCode enum and a User object. As described by the inquiry, you want to flatten the collection and present it in a grid-like structure, as shown in the sample data provided:
TypeCode | User |
---|---|
1 | Don Smith |
1 | Mike Jones |
1 | James Ray |
2 | Tom Rizzo |
2 | Alex Homes |
3 | Andy Bates |
The desired output would be:
1 | 2 | 3 |
---|---|---|
Don Smith | Tom Rizzo | Andy Bates |
Mike Jones | Alex Homes | |
James Ray |
LINQ Solution:
LINQ can efficiently handle this type of pivoting operation. Here's a code snippet that demonstrates how:
// Sample data var data = new[] { new { Foo = 1, Bar = "Don Smith"}, new { Foo = 1, Bar = "Mike Jones"}, new { Foo = 1, Bar = "James Ray"}, new { Foo = 2, Bar = "Tom Rizzo"}, new { Foo = 2, Bar = "Alex Homes"}, new { Foo = 3, Bar = "Andy Bates"}, }; // Group into columns and select rows per column var grps = from d in data group d by d.Foo into grp select new { Foo = grp.Key, Bars = grp.Select(d2 => d2.Bar).ToArray() }; // Find the total number of (data) rows int rows = grps.Max(grp => grp.Bars.Length); // Output columns foreach (var grp in grps) { Console.Write(grp.Foo + "\t"); } Console.WriteLine(); // Output data for (int i = 0; i < rows; i++) { foreach (var grp in grps) { Console.Write((i < grp.Bars.Length ? grp.Bars[i] : null) + "\t"); } Console.WriteLine(); }
Output:
1 2 3
Don Smith Tom Rizzo Andy Bates
Mike Jones Alex Homes
James Ray
This LINQ solution effectively pivots the data into the desired format by grouping items with the same Foo value and then selecting the Bars (user names) per column. It calculates the maximum number of rows based on the entries in each column and generates the output in a well-structured table form.
The above is the detailed content of How Can I Pivot Data Using LINQ?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











The history and evolution of C# and C are unique, and the future prospects are also different. 1.C was invented by BjarneStroustrup in 1983 to introduce object-oriented programming into the C language. Its evolution process includes multiple standardizations, such as C 11 introducing auto keywords and lambda expressions, C 20 introducing concepts and coroutines, and will focus on performance and system-level programming in the future. 2.C# was released by Microsoft in 2000. Combining the advantages of C and Java, its evolution focuses on simplicity and productivity. For example, C#2.0 introduced generics and C#5.0 introduced asynchronous programming, which will focus on developers' productivity and cloud computing in the future.

The future development trends of C and XML are: 1) C will introduce new features such as modules, concepts and coroutines through the C 20 and C 23 standards to improve programming efficiency and security; 2) XML will continue to occupy an important position in data exchange and configuration files, but will face the challenges of JSON and YAML, and will develop in a more concise and easy-to-parse direction, such as the improvements of XMLSchema1.1 and XPath3.1.

C Reasons for continuous use include its high performance, wide application and evolving characteristics. 1) High-efficiency performance: C performs excellently in system programming and high-performance computing by directly manipulating memory and hardware. 2) Widely used: shine in the fields of game development, embedded systems, etc. 3) Continuous evolution: Since its release in 1983, C has continued to add new features to maintain its competitiveness.

C The core concepts of multithreading and concurrent programming include thread creation and management, synchronization and mutual exclusion, conditional variables, thread pooling, asynchronous programming, common errors and debugging techniques, and performance optimization and best practices. 1) Create threads using the std::thread class. The example shows how to create and wait for the thread to complete. 2) Synchronize and mutual exclusion to use std::mutex and std::lock_guard to protect shared resources and avoid data competition. 3) Condition variables realize communication and synchronization between threads through std::condition_variable. 4) The thread pool example shows how to use the ThreadPool class to process tasks in parallel to improve efficiency. 5) Asynchronous programming uses std::as

C interacts with XML through third-party libraries (such as TinyXML, Pugixml, Xerces-C). 1) Use the library to parse XML files and convert them into C-processable data structures. 2) When generating XML, convert the C data structure to XML format. 3) In practical applications, XML is often used for configuration files and data exchange to improve development efficiency.

C Learners and developers can get resources and support from StackOverflow, Reddit's r/cpp community, Coursera and edX courses, open source projects on GitHub, professional consulting services, and CppCon. 1. StackOverflow provides answers to technical questions; 2. Reddit's r/cpp community shares the latest news; 3. Coursera and edX provide formal C courses; 4. Open source projects on GitHub such as LLVM and Boost improve skills; 5. Professional consulting services such as JetBrains and Perforce provide technical support; 6. CppCon and other conferences help careers

The modern C design model uses new features of C 11 and beyond to help build more flexible and efficient software. 1) Use lambda expressions and std::function to simplify observer pattern. 2) Optimize performance through mobile semantics and perfect forwarding. 3) Intelligent pointers ensure type safety and resource management.

There are significant differences in the learning curves of C# and C and developer experience. 1) The learning curve of C# is relatively flat and is suitable for rapid development and enterprise-level applications. 2) The learning curve of C is steep and is suitable for high-performance and low-level control scenarios.
