Home Backend Development Python Tutorial Deploying an AI Traffic Congestion Predictor using AWS Bedrock: A Complete Overview

Deploying an AI Traffic Congestion Predictor using AWS Bedrock: A Complete Overview

Jan 05, 2025 pm 10:56 PM

Deploying an AI Traffic Congestion Predictor using AWS Bedrock: A Complete Overview

We all love traffic, right? The only time where I think about how I totally messed up my presentation (overthinking is a pain).

All jokes aside, I've wanted to create a project where I can look for traffic in real-time as a PoC so that I further enhance it in the future. Meet the traffic congestion predictor.

I'll walk through deploying the Traffic Congestion Predictor using AWS Bedrock. AWS Bedrock provides a fully managed service for foundation models, making it perfect for deploying AI applications. We'll cover everything from initial setup to final deployment and testing.

Now, the prerequisites

  • AWS Account with appropriate permissions (Had to use my debit card for verification because I assumed it was free to use for a certain limit. Pain).
  • Python 3.8
  • Traffic Congestion Predictor code (from previous development)
  • AWS CLI installed and configured
  • Basic knowledge of Python and AWS services will do just fine.

Step 1: Preparing Your Environment

First, set up your development environment:

# Create a new virtual environment
python -m venv bedrock-env
source bedrock-env/bin/activate  # On Windows use: bedrock-env\Scripts\activate

# Install required packages
pip install boto3 pandas numpy scikit-learn streamlit plotly

Copy after login

Step 2: AWS Bedrock Setup

  1. Navigate to AWS Console and enable AWS Bedrock

  2. Create a new model in Bedrock:

  • Go to the AWS Bedrock console
  • Select "Model access"
  • Request access to Claude model family
  • Wait for approval (usually instant but anything can happen)

Step 3: Modify Code for Bedrock Integration

Create a new file "bedrock_integration.py":

import boto3
import json
import numpy as np
import pandas as pd
from typing import Dict, Any

class TrafficPredictor:
    def __init__(self):
        self.bedrock = boto3.client(
            service_name='bedrock-runtime',
            region_name='us-east-1'  # Change to your region
        )

    def prepare_features(self, input_data: Dict[str, Any]) -> pd.DataFrame:
        # Convert input data to model features
        hour = input_data['hour']
        day = input_data['day']

        features = pd.DataFrame({
            'hour_sin': [np.sin(2 * np.pi * hour/24)],
            'hour_cos': [np.cos(2 * np.pi * hour/24)],
            'day_sin': [np.sin(2 * np.pi * day/7)],
            'day_cos': [np.cos(2 * np.pi * day/7)],
            'temperature': [input_data['temperature']],
            'precipitation': [input_data['precipitation']],
            'special_event': [input_data['special_event']],
            'road_work': [input_data['road_work']],
            'vehicle_count': [input_data['vehicle_count']]
        })
        return features

    def predict(self, input_data: Dict[str, Any]) -> float:
        features = self.prepare_features(input_data)

        # Prepare prompt for Claude
        prompt = f"""
        Based on the following traffic conditions, predict the congestion level (0-10):
        - Time: {input_data['hour']}:00
        - Day of week: {input_data['day']}
        - Temperature: {input_data['temperature']}°C
        - Precipitation: {input_data['precipitation']}mm
        - Special event: {'Yes' if input_data['special_event'] else 'No'}
        - Road work: {'Yes' if input_data['road_work'] else 'No'}
        - Vehicle count: {input_data['vehicle_count']}

        Return only the numerical prediction.
        """

        # Call Bedrock
        response = self.bedrock.invoke_model(
            modelId='anthropic.claude-v2',
            body=json.dumps({
                "prompt": prompt,
                "max_tokens": 10,
                "temperature": 0
            })
        )

        # Parse response
        response_body = json.loads(response['body'].read())
        prediction = float(response_body['completion'].strip())

        return np.clip(prediction, 0, 10)
Copy after login

Step 4: Create FastAPI Backend

Create "api.py:"

from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from bedrock_integration import TrafficPredictor
from typing import Dict, Any

app = FastAPI()
predictor = TrafficPredictor()

class PredictionInput(BaseModel):
    hour: int
    day: int
    temperature: float
    precipitation: float
    special_event: bool
    road_work: bool
    vehicle_count: int

@app.post("/predict")
async def predict_traffic(input_data: PredictionInput) -> Dict[str, float]:
    try:
        prediction = predictor.predict(input_data.dict())
        return {"congestion_level": prediction}
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))
Copy after login

Step 5: Create AWS Infrastructure

Create "infrastructure.py":

import boto3
import json

def create_infrastructure():
    # Create ECR repository
    ecr = boto3.client('ecr')
    try:
        ecr.create_repository(repositoryName='traffic-predictor')
    except ecr.exceptions.RepositoryAlreadyExistsException:
        pass

    # Create ECS cluster
    ecs = boto3.client('ecs')
    ecs.create_cluster(clusterName='traffic-predictor-cluster')

    # Create task definition
    task_def = {
        'family': 'traffic-predictor',
        'containerDefinitions': [{
            'name': 'traffic-predictor',
            'image': f'{ecr.describe_repositories()["repositories"][0]["repositoryUri"]}:latest',
            'memory': 512,
            'cpu': 256,
            'essential': True,
            'portMappings': [{
                'containerPort': 8000,
                'hostPort': 8000,
                'protocol': 'tcp'
            }]
        }],
        'requiresCompatibilities': ['FARGATE'],
        'networkMode': 'awsvpc',
        'cpu': '256',
        'memory': '512'
    }

    ecs.register_task_definition(**task_def)
Copy after login

Step 6: Containerise the Application

Create "Dockerfile:"

FROM python:3.9-slim

WORKDIR /app

COPY requirements.txt .
RUN pip install --no-cache-dir -r requirements.txt

COPY . .

CMD ["uvicorn", "api:app", "--host", "0.0.0.0", "--port", "8000"]
Copy after login

Create "requirements.txt:"

fastapi
uvicorn
boto3
pandas
numpy
scikit-learn
Copy after login

Step 7: Deploy to AWS

Run these commands:

# Build and push Docker image
aws ecr get-login-password --region us-east-1 | docker login --username AWS --password-stdin $AWS_ACCOUNT_ID.dkr.ecr.us-east-1.amazonaws.com
docker build -t traffic-predictor .
docker tag traffic-predictor:latest $AWS_ACCOUNT_ID.dkr.ecr.us-east-1.amazonaws.com/traffic-predictor:latest
docker push $AWS_ACCOUNT_ID.dkr.ecr.us-east-1.amazonaws.com/traffic-predictor:latest

# Create infrastructure
python infrastructure.py
Copy after login

Step 8: Update Streamlit Frontend

Modify "app.py" to connect to the API:

import streamlit as st
import requests
import plotly.graph_objects as go
import plotly.express as px

API_ENDPOINT = "your-api-endpoint"

def predict_traffic(input_data):
    response = requests.post(f"{API_ENDPOINT}/predict", json=input_data)
    return response.json()["congestion_level"]

# Rest of the Streamlit code remains the same, but replace direct model calls
# with API calls using predict_traffic()
Copy after login

Step 9: Testing and Monitoring

Test the API endpoint:

curl -X POST "your-api-endpoint/predict" \
     -H "Content-Type: application/json" \
     -d '{"hour":12,"day":1,"temperature":25,"precipitation":0,"special_event":false,"road_work":false,"vehicle_count":1000}'
Copy after login

Monitor using AWS CloudWatch:

  • Set up CloudWatch dashboard
  • Create alarms for error rates and latency
  • Monitor API usage and costs

If everything goes well. Congratulations! You've successfully deployed a traffic congestion predictor. Pad yourself on the back for that one! Make sure you monitor costs and performance, regularly update the model, and implement a CI/CD pipeline. The next steps are adding user authentication, enhancing monitoring and alerting, optimising model performance, and adding more features based on user feedback.

Thanks for reading this. Let me know any thoughts, questions or observations!

The above is the detailed content of Deploying an AI Traffic Congestion Predictor using AWS Bedrock: A Complete Overview. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Hot Topics

Java Tutorial
1664
14
PHP Tutorial
1266
29
C# Tutorial
1239
24
Python vs. C  : Applications and Use Cases Compared Python vs. C : Applications and Use Cases Compared Apr 12, 2025 am 12:01 AM

Python is suitable for data science, web development and automation tasks, while C is suitable for system programming, game development and embedded systems. Python is known for its simplicity and powerful ecosystem, while C is known for its high performance and underlying control capabilities.

The 2-Hour Python Plan: A Realistic Approach The 2-Hour Python Plan: A Realistic Approach Apr 11, 2025 am 12:04 AM

You can learn basic programming concepts and skills of Python within 2 hours. 1. Learn variables and data types, 2. Master control flow (conditional statements and loops), 3. Understand the definition and use of functions, 4. Quickly get started with Python programming through simple examples and code snippets.

Python: Games, GUIs, and More Python: Games, GUIs, and More Apr 13, 2025 am 12:14 AM

Python excels in gaming and GUI development. 1) Game development uses Pygame, providing drawing, audio and other functions, which are suitable for creating 2D games. 2) GUI development can choose Tkinter or PyQt. Tkinter is simple and easy to use, PyQt has rich functions and is suitable for professional development.

Python vs. C  : Learning Curves and Ease of Use Python vs. C : Learning Curves and Ease of Use Apr 19, 2025 am 12:20 AM

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.

How Much Python Can You Learn in 2 Hours? How Much Python Can You Learn in 2 Hours? Apr 09, 2025 pm 04:33 PM

You can learn the basics of Python within two hours. 1. Learn variables and data types, 2. Master control structures such as if statements and loops, 3. Understand the definition and use of functions. These will help you start writing simple Python programs.

Python and Time: Making the Most of Your Study Time Python and Time: Making the Most of Your Study Time Apr 14, 2025 am 12:02 AM

To maximize the efficiency of learning Python in a limited time, you can use Python's datetime, time, and schedule modules. 1. The datetime module is used to record and plan learning time. 2. The time module helps to set study and rest time. 3. The schedule module automatically arranges weekly learning tasks.

Python: Exploring Its Primary Applications Python: Exploring Its Primary Applications Apr 10, 2025 am 09:41 AM

Python is widely used in the fields of web development, data science, machine learning, automation and scripting. 1) In web development, Django and Flask frameworks simplify the development process. 2) In the fields of data science and machine learning, NumPy, Pandas, Scikit-learn and TensorFlow libraries provide strong support. 3) In terms of automation and scripting, Python is suitable for tasks such as automated testing and system management.

Python: Automation, Scripting, and Task Management Python: Automation, Scripting, and Task Management Apr 16, 2025 am 12:14 AM

Python excels in automation, scripting, and task management. 1) Automation: File backup is realized through standard libraries such as os and shutil. 2) Script writing: Use the psutil library to monitor system resources. 3) Task management: Use the schedule library to schedule tasks. Python's ease of use and rich library support makes it the preferred tool in these areas.

See all articles