I am trying to use ChatGPT as the chatbot for my Magento 2 website, and I want to pass product data to it. To do this, I collected all the products and stored them in a JSON file, which I then read to embed the data in the systemRoleContent of the system role. However, the issue I am facing is that the JSON file is quite large.
{ "bot_response": "Error: ChatBot Error: Unexpected API response structure: {\n \"error\": {\n \"message\": \"Request too large for gpt-4o on tokens per min (TPM): Limit 30000, Requested 501140. The input or output tokens must be reduced in order to run successfully. Visit https://platform.openai.com/account/rate-limits to learn more.\",\n \"type\": \"tokens\",\n \"param\": null,\n \"code\": \"rate_limit_exceeded\"\n }\n}\n" }
I noticed that there is a function that needs to be added to the API configuration, which allows you to run a query to select products based on keywords found in their names or descriptions that match keywords in the user’s message. The challenge is that users initially may not know the names of the products; they come to the chatbot to discover them. How can I address this issue?
This is the code that I am working with right now:
<?php namespace MetaCares\Chatbot\Model; use Magento\Framework\App\ObjectManager; class ChatBot { private $authorization; private $endpoint; private $conversationHistory = []; private $productsFile; private $fetchingDateFile; private $didFetchProducts = false; public function __construct() { $this->authorization = 'sk-proj-'; $this->endpoint = 'https://api.openai.com/v1/chat/completions'; $this->productsFile = __DIR__ . '/products.json'; $this->fetchingDateFile = __DIR__ . '/fetching_date.json'; $currentTime = time(); $timeDifferenceSeconds = 24 * 3600; if (!file_exists($this->fetchingDateFile)) { file_put_contents($this->fetchingDateFile, json_encode(['last_fetch_time' => 0])); } $fetchingData = json_decode(file_get_contents($this->fetchingDateFile), true); $lastFetchTime = $fetchingData['last_fetch_time'] ?? 0; if ($currentTime - $lastFetchTime > $timeDifferenceSeconds) { $products = $this->fetchProductsUsingModel(); $productsJson = json_encode($products); file_put_contents($this->productsFile, $productsJson); $fetchingData['last_fetch_time'] = $currentTime; file_put_contents($this->fetchingDateFile, json_encode($fetchingData)); $this->didFetchProducts = true; } $jsonSampleData = file_get_contents($this->productsFile); $systemRoleContent = <<<EOT Nom: Meta Cares Bot Description BOT Meta Cares répond aux questions sur les produits du site et fournit des conseils santé fiables. Tu aides les clients de Meta Cares à faire des choix éclairés tout en offrant un accompagnement personnalisé, sécurisé et adapté à leurs besoins. catalogue Meta Cares {$jsonSampleData} Liste des Sites Référencés : - PubMed : [https://pubmed.ncbi.nlm.nih.gov/](https://pubmed.ncbi.nlm.nih.gov/) - ScienceDirect : [https://www.sciencedirect.com/](https://www.sciencedirect.com/) --- - Génération d’images DALL·E : Désactivée EOT; $this->conversationHistory[] = [ 'role' => 'system', 'content' => $systemRoleContent ]; if (session_status() == PHP_SESSION_NONE) { session_start(); } if (isset($_SESSION['chat_history'])) { $this->conversationHistory = $_SESSION['chat_history']; } } public function fetchProductsUsingModel(): array { return $products; } private function getCategoryNames(array $categoryIds): array { return $categoryNames; } public function sendMessage(string $message): array { try { $this->conversationHistory[] = [ 'role' => 'user', 'content' => $message ]; $data = [ 'model' => 'gpt-4o', 'messages' => array_map(function ($msg) { return [ 'role' => $msg['role'] === 'bot' ? 'assistant' : $msg['role'], 'content' => $msg['content'] ]; }, $this->conversationHistory) ]; $response = $this->makeApiRequest($data); $arrResult = json_decode($response, true); if (json_last_error() !== JSON_ERROR_NONE) { throw new \Exception('Invalid API response format'); } if (!isset($arrResult['choices']) || !isset($arrResult['choices'][0]['message']['content'])) { throw new \Exception('Unexpected API response structure: ' . $response); } $assistantResponse = $arrResult['choices'][0]['message']['content']; $this->conversationHistory[] = [ 'role' => 'bot', 'content' => $assistantResponse ]; $_SESSION['chat_history'] = $this->conversationHistory; return [ "conversationHistory" => $_SESSION['chat_history'], 'didFetchProducts' => $this->didFetchProducts, 'response' => $assistantResponse, ]; } catch (\Exception $e) { throw new \Exception('ChatBot Error: ' . $e->getMessage()); } } private function makeApiRequest(array $data): string { $ch = curl_init(); curl_setopt_array($ch, [ CURLOPT_URL => $this->endpoint, CURLOPT_POST => true, CURLOPT_POSTFIELDS => json_encode($data), CURLOPT_HTTPHEADER => [ 'Content-Type: application/json', 'Authorization: Bearer ' . $this->authorization, ], CURLOPT_RETURNTRANSFER => true, CURLOPT_SSL_VERIFYPEER => false, CURLOPT_SSL_VERIFYHOST => 0 ]); $response = curl_exec($ch); if (curl_errno($ch)) { $error = curl_error($ch); curl_close($ch); throw new \Exception('API request failed: ' . $error); } curl_close($ch); return $response; } }
The above is the detailed content of How to Optimize Large JSON Files for Use with ChatGPT API?. For more information, please follow other related articles on the PHP Chinese website!