In this practical guide, you will learn how to create a highly scalable model deployment solution with built-in LLMs for your applications.
In your examples, we will use Hugging Face’s ChatGPT2 model, but you can easily plug in any other model including ChatGPT4, Claude, etc.
Whether you are designing a new application with AI capabilities or improving the existing AI systems, this guide will help you step by step to create a strong LLM integration.
Before we start writing code, let’s figure out what it takes to build a production LLM integration. API calls are not the only thing you need to consider when building production-ready LLM integration, you also need to consider things like reliability, cost, and stability. Your production applications must address issues such as service outages, rate limits, and variability in response time while keeping costs under control.
Here's what we'll build together:
Before we start coding, make sure you have:
Want to follow along? The complete code is available in your GitHub repository.
Let's start by getting your development environment ready. We'll create a clean project structure and install all the necessary packages.
First, let's create your project directory and set up a Python virtual environment. Open your terminal and run:
mkdir llm_integration && cd llm_integration python3 -m venv env syource env/bin/activate
Now let's set up your project dependencies. Create a new requirements.txt file with these essential packages:
transformers==4.36.0 huggingface-hub==0.19.4 redis==4.6.0 pydantic==2.5.0 pydantic-settings==2.1.0 tenacity==8.2.3 python-dotenv==1.0.0 fastapi==0.104.1 uvicorn==0.24.0 torch==2.1.0 numpy==1.24.3
Let's break down why we need each of these packages:
Install all the packages with the command:
mkdir llm_integration && cd llm_integration python3 -m venv env syource env/bin/activate
Let's organize your project with a clean structure. Create these directories and files in your project directory:
transformers==4.36.0 huggingface-hub==0.19.4 redis==4.6.0 pydantic==2.5.0 pydantic-settings==2.1.0 tenacity==8.2.3 python-dotenv==1.0.0 fastapi==0.104.1 uvicorn==0.24.0 torch==2.1.0 numpy==1.24.3
Let's start with your LLM client which is the most important component of your application. This is where we'll interact with the ChatGPT model (or any other LLM you prefer). Add the following code snippets to your core/llm_client.py file:
pip install -r requirements.txt
In this first part of yourLLMClient class, we're setting up the foundation:
Now let's add the method that talks to your model:
llm_integration/ ├── core/ │ ├── llm_client.py # your main LLM interaction code │ ├── prompt_manager.py # Handles prompt templates │ └── response_handler.py # Processes LLM responses ├── cache/ │ └── redis_manager.py # Manages your caching system ├── config/ │ └── settings.py # Configuration management ├── api/ │ └── routes.py # API endpoints ├── utils/ │ ├── monitoring.py # Usage tracking │ └── rate_limiter.py # Rate limiting logic ├── requirements.txt └── main.py └── usage_logs.json
Let's break down what's happening in this completion method:
Next, we need to add the response handler to parse and structure the LLM's raw output. Do that in your core/response_handler.py file with the following code snippets:
import torch from transformers import AutoModelForCausalLM, AutoTokenizer from tenacity import retry, stop_after_attempt, wait_exponential from typing import Dict, Optional import logging class LLMClient: def __init__(self, model_name: str = "gpt2", timeout: int = 30): try: self.tokenizer = AutoTokenizer.from_pretrained(model_name) self.model = AutoModelForCausalLM.from_pretrained( model_name, device_map="auto", torch_dtype=torch.float16 ) except Exception as e: logging.error(f"Error loading model: {str(e)}") # Fallback to a simpler model if the specified one fails self.tokenizer = AutoTokenizer.from_pretrained("gpt2") self.model = AutoModelForCausalLM.from_pretrained("gpt2") self.timeout = timeout self.logger = logging.getLogger(__name__)
Now let's create your caching system to improve the application performance and reduce costs. Add the following code snippets to your cache/redis_manager.py file:
@retry( stop=stop_after_attempt(3), wait=wait_exponential(multiplier=1, min=4, max=10), reraise=True ) async def complete(self, prompt: str, temperature: float = 0.7, max_tokens: Optional[int] = None) -> Dict: """Get completion from the model with automatic retries""" try: inputs = self.tokenizer(prompt, return_tensors="pt").to( self.model.device ) with torch.no_grad(): outputs = self.model.generate( **inputs, max_new_tokens=max_tokens or 100, temperature=temperature, do_sample=True ) response_text = self.tokenizer.decode( outputs[0], skip_special_tokens=True ) # Calculate token usage for monitoring input_tokens = len(inputs.input_ids[0]) output_tokens = len(outputs[0]) - input_tokens return { 'content': response_text, 'usage': { 'prompt_tokens': input_tokens, 'completion_tokens': output_tokens, 'total_tokens': input_tokens + output_tokens }, 'model': "gpt2" } except Exception as e: self.logger.error(f"Error in LLM completion: {str(e)}") raise
In the above code snippets, we created a CacheManager class that handles all caching operations with the following:
Let's create your prompt manager that will manage the prompts for your LLM model. Add the following code to your core/prompt_manager.py:
mkdir llm_integration && cd llm_integration python3 -m venv env syource env/bin/activate
Then create a sample prompt template for content moderation in your prompts/content_moderation.json file with code snippets:
transformers==4.36.0 huggingface-hub==0.19.4 redis==4.6.0 pydantic==2.5.0 pydantic-settings==2.1.0 tenacity==8.2.3 python-dotenv==1.0.0 fastapi==0.104.1 uvicorn==0.24.0 torch==2.1.0 numpy==1.24.3
Now your prompt manager will be able to load prompt templates from your JSON file and get also get a formatted prompt template.
To keep all your LLM configurations in one place and easily reuse them across your application, let's create configuration settings. Add the code below to your config/settings.py file:
pip install -r requirements.txt
Next, let's implement rate limiting to control how users access your application’s resources. To do that, add the following code to your utils/rate_limiter.py file:
llm_integration/ ├── core/ │ ├── llm_client.py # your main LLM interaction code │ ├── prompt_manager.py # Handles prompt templates │ └── response_handler.py # Processes LLM responses ├── cache/ │ └── redis_manager.py # Manages your caching system ├── config/ │ └── settings.py # Configuration management ├── api/ │ └── routes.py # API endpoints ├── utils/ │ ├── monitoring.py # Usage tracking │ └── rate_limiter.py # Rate limiting logic ├── requirements.txt └── main.py └── usage_logs.json
In the RateLimiter we implemented a resuable check_rate_limit method that can be used in any route to handle rate limiting by simply passing the period and number of requests allowed for each user for period of time.
Now let's create your API endpoints in the api/routes.py file to integrate your LLM in your application:
import torch from transformers import AutoModelForCausalLM, AutoTokenizer from tenacity import retry, stop_after_attempt, wait_exponential from typing import Dict, Optional import logging class LLMClient: def __init__(self, model_name: str = "gpt2", timeout: int = 30): try: self.tokenizer = AutoTokenizer.from_pretrained(model_name) self.model = AutoModelForCausalLM.from_pretrained( model_name, device_map="auto", torch_dtype=torch.float16 ) except Exception as e: logging.error(f"Error loading model: {str(e)}") # Fallback to a simpler model if the specified one fails self.tokenizer = AutoTokenizer.from_pretrained("gpt2") self.model = AutoModelForCausalLM.from_pretrained("gpt2") self.timeout = timeout self.logger = logging.getLogger(__name__)
Here we defined a /moderate endpoint in the APIRouter class, which is responsible for organizing API routes. The @lru_cache decorator is applied to dependency injection functions (get_llm_client, get_response_handler, get_cache_manager, and get_prompt_manager) to ensure that instances of LLMClient, CacheManager, and PromptManager are cached for better performance. The moderate_content function, decorated with @router.post, defines a POST route for content moderation and utilizes FastAPI's Depends mechanism to inject these dependencies. Inside the function, the RateLimiter class, configured with rate limit settings from settings, enforces request limits.
Finally, let's update your main.py to bring everything together:
@retry( stop=stop_after_attempt(3), wait=wait_exponential(multiplier=1, min=4, max=10), reraise=True ) async def complete(self, prompt: str, temperature: float = 0.7, max_tokens: Optional[int] = None) -> Dict: """Get completion from the model with automatic retries""" try: inputs = self.tokenizer(prompt, return_tensors="pt").to( self.model.device ) with torch.no_grad(): outputs = self.model.generate( **inputs, max_new_tokens=max_tokens or 100, temperature=temperature, do_sample=True ) response_text = self.tokenizer.decode( outputs[0], skip_special_tokens=True ) # Calculate token usage for monitoring input_tokens = len(inputs.input_ids[0]) output_tokens = len(outputs[0]) - input_tokens return { 'content': response_text, 'usage': { 'prompt_tokens': input_tokens, 'completion_tokens': output_tokens, 'total_tokens': input_tokens + output_tokens }, 'model': "gpt2" } except Exception as e: self.logger.error(f"Error in LLM completion: {str(e)}") raise
In the above code, we've created a FastAPI app and the router using api.routes under the /api/v1 prefix. Enabled logging to display informational messages with timestamps. The app will run localhost:8000 using Uvicorn, with hot-reloading enabled.
We now have all the components in place, let’s start getting your application up and running. First, create a .env file in your project root directory and add your HUGGINGFACE_API_KEY and REDIS_URL:
mkdir llm_integration && cd llm_integration python3 -m venv env syource env/bin/activate
Then ensure Redis is running on your machine. On most Unix-based systems, you can start it with the command:
transformers==4.36.0 huggingface-hub==0.19.4 redis==4.6.0 pydantic==2.5.0 pydantic-settings==2.1.0 tenacity==8.2.3 python-dotenv==1.0.0 fastapi==0.104.1 uvicorn==0.24.0 torch==2.1.0 numpy==1.24.3
Now you can start your application:
pip install -r requirements.txt
your FastAPI server will start running on http://localhost:8000. The automatic API documentation will be available at http://localhost:8000/docs - this is super helpful for testing your endpoints!
Let's test your newly created API with a real request. Open a new terminal and run this curl command:
llm_integration/ ├── core/ │ ├── llm_client.py # your main LLM interaction code │ ├── prompt_manager.py # Handles prompt templates │ └── response_handler.py # Processes LLM responses ├── cache/ │ └── redis_manager.py # Manages your caching system ├── config/ │ └── settings.py # Configuration management ├── api/ │ └── routes.py # API endpoints ├── utils/ │ ├── monitoring.py # Usage tracking │ └── rate_limiter.py # Rate limiting logic ├── requirements.txt └── main.py └── usage_logs.json
You should see a response like this on your terminal:
Now let's add some monitoring features to track how your application is performing and how much resyources is being used. Add the following code to your utils/monitoring.py file:
import torch from transformers import AutoModelForCausalLM, AutoTokenizer from tenacity import retry, stop_after_attempt, wait_exponential from typing import Dict, Optional import logging class LLMClient: def __init__(self, model_name: str = "gpt2", timeout: int = 30): try: self.tokenizer = AutoTokenizer.from_pretrained(model_name) self.model = AutoModelForCausalLM.from_pretrained( model_name, device_map="auto", torch_dtype=torch.float16 ) except Exception as e: logging.error(f"Error loading model: {str(e)}") # Fallback to a simpler model if the specified one fails self.tokenizer = AutoTokenizer.from_pretrained("gpt2") self.model = AutoModelForCausalLM.from_pretrained("gpt2") self.timeout = timeout self.logger = logging.getLogger(__name__)
The UsageMonitor class will be performing the following operations:
Next, add a new method to calculate usage statistics:
@retry( stop=stop_after_attempt(3), wait=wait_exponential(multiplier=1, min=4, max=10), reraise=True ) async def complete(self, prompt: str, temperature: float = 0.7, max_tokens: Optional[int] = None) -> Dict: """Get completion from the model with automatic retries""" try: inputs = self.tokenizer(prompt, return_tensors="pt").to( self.model.device ) with torch.no_grad(): outputs = self.model.generate( **inputs, max_new_tokens=max_tokens or 100, temperature=temperature, do_sample=True ) response_text = self.tokenizer.decode( outputs[0], skip_special_tokens=True ) # Calculate token usage for monitoring input_tokens = len(inputs.input_ids[0]) output_tokens = len(outputs[0]) - input_tokens return { 'content': response_text, 'usage': { 'prompt_tokens': input_tokens, 'completion_tokens': output_tokens, 'total_tokens': input_tokens + output_tokens }, 'model': "gpt2" } except Exception as e: self.logger.error(f"Error in LLM completion: {str(e)}") raise
Update your API to add the monitoring features from the UsageMonitor class:
from typing import Dict import logging class ResponseHandler: def __init__(self): self.logger = logging.getLogger(__name__) def parse_moderation_response(self, raw_response: str) -> Dict: """Parse and structure the raw LLM response for moderation""" try: # Default response structure structured_response = { "is_appropriate": True, "confidence_score": 0.0, "reason": None } # Simple keyword-based analysis lower_response = raw_response.lower() # Check for inappropriate content signals if any(word in lower_response for word in ['inappropriate', 'unsafe', 'offensive', 'harmful']): structured_response["is_appropriate"] = False structured_response["confidence_score"] = 0.9 # Extract reason if present if "because" in lower_response: reason_start = lower_response.find("because") structured_response["reason"] = raw_response[reason_start:].split('.')[0].strip() else: structured_response["confidence_score"] = 0.95 return structured_response except Exception as e: self.logger.error(f"Error parsing response: {str(e)}") return { "is_appropriate": True, "confidence_score": 0.5, "reason": "Failed to parse response" } def format_response(self, raw_response: Dict) -> Dict: """Format the final response with parsed content and usage stats""" try: return { "content": self.parse_moderation_response(raw_response["content"]), "usage": raw_response["usage"], "model": raw_response["model"] } except Exception as e: self.logger.error(f"Error formatting response: {str(e)}") raise
Now, test your /stats endpoint by running this curl command:
import redis from typing import Optional, Any import json import hashlib class CacheManager: def __init__(self, redis_url: str, ttl: int = 3600): self.redis = redis.from_url(redis_url) self.ttl = ttl def _generate_key(self, prompt: str, params: dict) -> str: """Generate a unique cache key""" cache_data = { 'prompt': prompt, 'params': params } serialized = json.dumps(cache_data, sort_keys=True) return hashlib.sha256(serialized.encode()).hexdigest() async def get_cached_response(self, prompt: str, params: dict) -> Optional[dict]: """Retrieve cached LLM response""" key = self._generate_key(prompt, params) cached = self.redis.get(key) return json.loads(cached) if cached else None async def cache_response(self, prompt: str, params: dict, response: dict) -> None: """Cache LLM response""" key = self._generate_key(prompt, params) self.redis.setex( key, self.ttl, json.dumps(response) )
The above command will show you the stats of your requests on the /moderate endpoint as shown in the screenshot below:
Throughout this tutorial, have learned how to use a large language model in production applications. You implemented features like API clients, caching, prompt management, and error handling. As an example of these concepts, you developed a content moderation system.
Now that you have a solid foundation, you could enhance your system with:
Please recall that in the examples you used the ChatGPT2 model, but you can adapt this system to work with any LLM provider. So choose the model that meets your requirements and is within your budget.
Please don’t hesitate to contact me if you have questions or if you want to tell me what you are building with this system.
Happy coding! ?
The above is the detailed content of Integrating Large Language Models in Production Applications. For more information, please follow other related articles on the PHP Chinese website!