How to Safely Await Asynchronous Events in C#?
Handling asynchronous events in C#: Safely await asynchronous operations
Problem overview:
In C#, events are usually delegates without return values that are used to notify subscribers of specific events in the application. However, when trying to use an asynchronous event handler, a problem can arise: the event is fired, but the application is closed before the asynchronous handler completes execution.
Subscribe to events using an asynchronous handler:
In order to handle events asynchronously, it is not recommended to modify the event signature itself to return a Task. Instead, you can use a registration method that accepts an awaitable callback function. This provides greater flexibility and easier integration with third-party components.
Implementation using registration method:
private List<Func<Task>> ShutdownCallbacks = new List<Func<Task>>(); public void RegisterShutdownCallback(Func<Task> callback) { this.ShutdownCallbacks.Add(callback); } public async Task Shutdown() { var callbackTasks = new List<Task>(); foreach (var callback in this.ShutdownCallbacks) { callbackTasks.Add(callback()); } await Task.WhenAll(callbackTasks); }
In this example, the ShutdownCallbacks
list stores callback functions that can be awaited. The Shutdown()
method iterates through these callback functions and waits for them simultaneously. This ensures that all asynchronous handlers have completed before the shutdown process continues.
Call the event using a call list:
Alternatively, if you wish to preserve the existing event paradigm, you can use the GetInvocationList()
method to call handlers sequentially and wait for the returned Tasks.
class A { public event Func<object, EventArgs, Task> Shutdown; public async Task OnShutdown() { Func<object, EventArgs, Task> handler = Shutdown; if (handler == null) { return; } Delegate[] invocationList = handler.GetInvocationList(); Task[] handlerTasks = new Task[invocationList.Length]; for (int i = 0; i < invocationList.Length; i++) { handlerTasks[i] = ((Func<object, EventArgs, Task>)invocationList[i])(this, EventArgs.Empty); } await Task.WhenAll(handlerTasks); } }
Here, OnShutdown()
gets the event delegate, calls handlers and waits for their completion.
Conclusion:
While asynchronous event handlers may seem tempting, this approach is generally not recommended due to the potential for deadlocks and other problems. As mentioned above, using registered methods or call lists provides a more robust and easier to manage solution for asynchronously awaiting events in C#.
The above is the detailed content of How to Safely Await Asynchronous Events in C#?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



C language data structure: The data representation of the tree and graph is a hierarchical data structure consisting of nodes. Each node contains a data element and a pointer to its child nodes. The binary tree is a special type of tree. Each node has at most two child nodes. The data represents structTreeNode{intdata;structTreeNode*left;structTreeNode*right;}; Operation creates a tree traversal tree (predecision, in-order, and later order) search tree insertion node deletes node graph is a collection of data structures, where elements are vertices, and they can be connected together through edges with right or unrighted data representing neighbors.

Article discusses effective use of rvalue references in C for move semantics, perfect forwarding, and resource management, highlighting best practices and performance improvements.(159 characters)

The truth about file operation problems: file opening failed: insufficient permissions, wrong paths, and file occupied. Data writing failed: the buffer is full, the file is not writable, and the disk space is insufficient. Other FAQs: slow file traversal, incorrect text file encoding, and binary file reading errors.

C 20 ranges enhance data manipulation with expressiveness, composability, and efficiency. They simplify complex transformations and integrate into existing codebases for better performance and maintainability.

The article discusses dynamic dispatch in C , its performance costs, and optimization strategies. It highlights scenarios where dynamic dispatch impacts performance and compares it with static dispatch, emphasizing trade-offs between performance and

The article discusses using move semantics in C to enhance performance by avoiding unnecessary copying. It covers implementing move constructors and assignment operators, using std::move, and identifies key scenarios and pitfalls for effective appl

C language functions are the basis for code modularization and program building. They consist of declarations (function headers) and definitions (function bodies). C language uses values to pass parameters by default, but external variables can also be modified using address pass. Functions can have or have no return value, and the return value type must be consistent with the declaration. Function naming should be clear and easy to understand, using camel or underscore nomenclature. Follow the single responsibility principle and keep the function simplicity to improve maintainability and readability.

C memory management uses new, delete, and smart pointers. The article discusses manual vs. automated management and how smart pointers prevent memory leaks.
