CocoCaptions in PyTorch (3)
This post demonstrates using the CocoCaptions
class from the torchvision.datasets
library with various MS COCO datasets. The examples illustrate loading and displaying images from the unlabeled2017
subset. However, attempts to access data from stuff_train2017
, stuff_val2017
, stuff_train2017_pixelmaps
, and stuff_val2017_pixelmaps
resulted in errors, indicating incompatibility with CocoCaptions
. The code snippets and their outputs are provided below.
Code and Output:
The code attempts to load and utilize different subsets of the MS COCO dataset using CocoCaptions
. The unlabeled2017
subset loads successfully and allows for image display. Other subsets (containing "stuff" and "panoptic" data) cause errors, highlighting limitations of using CocoCaptions
with these specific data structures.
from torchvision.datasets import CocoCaptions import matplotlib.pyplot as plt # ... (CocoCaptions instantiation code as provided in the input) ... # ... (len() calls and error handling code as provided in the input) ... unlabeled2017_data[2] # Displays image and empty caption list unlabeled2017_data[47] # Displays image and empty caption list unlabeled2017_data[64] # Displays image and empty caption list def show_images(data, ims, main_title=None): file = data.root.split('/')[-1] fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(14, 8)) fig.suptitle(t=main_title, y=0.9, fontsize=14) for i, axis in zip(ims, axes.ravel()): if not data[i][1]: im, _ = data[i] axis.imshow(X=im) fig.tight_layout() plt.show() ims = (2, 47, 64) show_images(data=unlabeled2017_data, ims=ims, main_title="unlabeled2017_data")
The show_images
function displays three images from the unlabeled2017_data
subset.
Conclusion:
This experiment shows that while CocoCaptions
works with certain MS COCO data subsets (like unlabeled2017
), it's not directly compatible with all annotations. The errors encountered suggest that the "stuff" and "panoptic" annotations require a different approach or a different dataset class for proper loading and usage. Further investigation into the structure of these annotations and the available torchvision
dataset classes is necessary for successful data access.
The above is the detailed content of CocoCaptions in PyTorch (3). For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











Python is suitable for data science, web development and automation tasks, while C is suitable for system programming, game development and embedded systems. Python is known for its simplicity and powerful ecosystem, while C is known for its high performance and underlying control capabilities.

Python excels in gaming and GUI development. 1) Game development uses Pygame, providing drawing, audio and other functions, which are suitable for creating 2D games. 2) GUI development can choose Tkinter or PyQt. Tkinter is simple and easy to use, PyQt has rich functions and is suitable for professional development.

You can learn basic programming concepts and skills of Python within 2 hours. 1. Learn variables and data types, 2. Master control flow (conditional statements and loops), 3. Understand the definition and use of functions, 4. Quickly get started with Python programming through simple examples and code snippets.

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.

You can learn the basics of Python within two hours. 1. Learn variables and data types, 2. Master control structures such as if statements and loops, 3. Understand the definition and use of functions. These will help you start writing simple Python programs.

To maximize the efficiency of learning Python in a limited time, you can use Python's datetime, time, and schedule modules. 1. The datetime module is used to record and plan learning time. 2. The time module helps to set study and rest time. 3. The schedule module automatically arranges weekly learning tasks.

Python excels in automation, scripting, and task management. 1) Automation: File backup is realized through standard libraries such as os and shutil. 2) Script writing: Use the psutil library to monitor system resources. 3) Task management: Use the schedule library to schedule tasks. Python's ease of use and rich library support makes it the preferred tool in these areas.

Python is widely used in the fields of web development, data science, machine learning, automation and scripting. 1) In web development, Django and Flask frameworks simplify the development process. 2) In the fields of data science and machine learning, NumPy, Pandas, Scikit-learn and TensorFlow libraries provide strong support. 3) In terms of automation and scripting, Python is suitable for tasks such as automated testing and system management.
