Earn with igits
Weekly Challenge 303: Python and Perl Solutions
Mohammad S. Anwar's Weekly Challenge provides a regular coding exercise. My solutions, presented below, are initially crafted in Python and then adapted to Perl. This dual approach enhances coding proficiency.
Challenge 303: Solutions
Task 1: Generating Even 3-Digit Integers
Task Description:
Given a list of positive integers, generate all unique even 3-digit integers that can be formed using the digits from the list.
Python Solution:
This Python solution leverages the itertools.permutations
function to efficiently generate all possible 3-digit combinations. A set is used to maintain uniqueness.
from itertools import permutations def three_digits_even(ints: list) -> list: solution = set() for p in permutations(ints, 3): num_str = "".join(map(str, p)) num = int(num_str) if num >= 100 and num % 2 == 0 and num_str[0] != '0': solution.add(num) return sorted(list(solution))
Perl Solution:
The Perl equivalent uses the Algorithm::Permute
module for permutations and a hash to ensure uniqueness.
use Algorithm::Permute; sub three_digits_even { my @ints = @_; my %seen; my @result; my $p = Algorithm::Permute->new(\@ints, 3); while (my @perm = $p->next) { my $num_str = join('', @perm); my $num = $num_str; if ($num >= 100 and $num % 2 == 0 and $num_str !~ /^0/) { push @result, $num unless $seen{$num}++; } } return sort {$a <=> $b} @result; }
Examples:
<code># Python print(three_digits_even([2, 1, 3, 0])) # Output: [102, 120, 130, 132, 210, 230, 302, 310, 312, 320] print(three_digits_even([2, 2, 8, 8, 2])) # Output: [222, 228, 282, 288, 822, 828, 882] # Perl print "@{[three_digits_even(2, 1, 3, 0)]}\n"; # Output: 102 120 130 132 210 230 302 310 312 320 print "@{[three_digits_even(2, 2, 8, 8, 2)]}\n"; # Output: 222 228 282 288 822 828 882</code>
Task 2: Delete and Earn
Task Description:
Given an array of integers, find the maximum number of points you can earn by repeatedly deleting an element, earning its value, and then deleting all elements with values one less and one more than the deleted element.
Python Solution:
This Python solution uses a Counter
to track element frequencies and employs a recursive function to explore different deletion strategies.
from collections import Counter def delete_and_earn(ints: list) -> int: freq = Counter(ints) return max_score(freq) def max_score(freq: Counter) -> int: max_points = 0 for num in list(freq): # Iterate through a copy to safely delete points = num * freq[num] new_freq = freq.copy() del new_freq[num] if num - 1 in new_freq: del new_freq[num - 1] if num + 1 in new_freq: del new_freq[num + 1] max_points = max(max_points, points + (0 if not new_freq else max_score(new_freq))) return max_points
Perl Solution:
The Perl solution mirrors the Python approach using a hash for frequency counting and a recursive function.
sub delete_and_earn { my %freq = map { $_ => 1 + $freq{$_} // 0 } @_; return max_score(\%freq); } sub max_score { my $freq = shift; my $max_points = 0; foreach my $num (keys %$freq) { my $points = $num * $freq->{$num}; my %new_freq = %$freq; delete $new_freq{$num}; delete $new_freq{$num - 1}; delete $new_freq{$num + 1}; $max_points = max($max_points, $points + (0 || max_score(\%new_freq))); } return $max_points; } sub max { return shift if @_ == 1; return $_[0] > $_[1] ? $_[0] : $_[1]; }
Examples:
<code># Python print(delete_and_earn([3, 4, 2])) # Output: 6 print(delete_and_earn([2, 2, 3, 3, 3, 4])) # Output: 9 # Perl print delete_and_earn(3, 4, 2), "\n"; # Output: 6 print delete_and_earn(2, 2, 3, 3, 3, 4), "\n"; # Output: 9</code>
These solutions demonstrate efficient and clear approaches to solving both tasks in the Weekly Challenge 303. The use of both Python and Perl highlights the transferable nature of algorithmic problem-solving across different programming languages.
The above is the detailed content of Earn with igits. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











Python is suitable for data science, web development and automation tasks, while C is suitable for system programming, game development and embedded systems. Python is known for its simplicity and powerful ecosystem, while C is known for its high performance and underlying control capabilities.

Python excels in gaming and GUI development. 1) Game development uses Pygame, providing drawing, audio and other functions, which are suitable for creating 2D games. 2) GUI development can choose Tkinter or PyQt. Tkinter is simple and easy to use, PyQt has rich functions and is suitable for professional development.

You can learn basic programming concepts and skills of Python within 2 hours. 1. Learn variables and data types, 2. Master control flow (conditional statements and loops), 3. Understand the definition and use of functions, 4. Quickly get started with Python programming through simple examples and code snippets.

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.

You can learn the basics of Python within two hours. 1. Learn variables and data types, 2. Master control structures such as if statements and loops, 3. Understand the definition and use of functions. These will help you start writing simple Python programs.

To maximize the efficiency of learning Python in a limited time, you can use Python's datetime, time, and schedule modules. 1. The datetime module is used to record and plan learning time. 2. The time module helps to set study and rest time. 3. The schedule module automatically arranges weekly learning tasks.

Python excels in automation, scripting, and task management. 1) Automation: File backup is realized through standard libraries such as os and shutil. 2) Script writing: Use the psutil library to monitor system resources. 3) Task management: Use the schedule library to schedule tasks. Python's ease of use and rich library support makes it the preferred tool in these areas.

Python is widely used in the fields of web development, data science, machine learning, automation and scripting. 1) In web development, Django and Flask frameworks simplify the development process. 2) In the fields of data science and machine learning, NumPy, Pandas, Scikit-learn and TensorFlow libraries provide strong support. 3) In terms of automation and scripting, Python is suitable for tasks such as automated testing and system management.
