


How to Deserialize JSON with Dynamic Numeric Keys Using Newtonsoft.Json?
How to deserialize a sub-object with dynamic (numeric) key names?
When dealing with complex JSON structures containing sub-objects with dynamic key names, deserializing them using Newtonsoft JSON.NET can present challenges. This article will delve into scenarios involving such structures and provide a complete solution using a custom JSON converter.
JSON structure
Consider the following JSON structure:
{ "users" : { "parentname":"test", "100034" : { "name" : "tom", "state" : "WA", "id" : "cedf-c56f-18a4-4b1" }, "10045" : { "name" : "steve", "state" : "NY", "id" : "ebb2-92bf-3062-7774" }, "12345" : { "name" : "mike", "state" : "MA", "id" : "fb60-b34f-6dc8-aaf7" } } }
In this structure, the "users" object contains a mix of known properties ("parentname") and unknown properties (with numeric keys representing child objects). The goal is to deserialize this structure into a C# object model, where sub-objects are represented as strongly typed classes.
Initial attempts and challenges
An initial attempt to deserialize JSON using standard JSON.NET code might look like this:
class RootObject { public string ParentName { get; set; } public Dictionary<string, User> users { get; set; } } class User { public string name { get; set; } public string state { get; set; } public string id { get; set; } }
Deserialization to this object model fails due to unknown properties in the "users" object. JSON.NET by default expects property names to match class properties, and since the numeric key does not correspond to any property in the User class, the deserialization process fails.
Custom JSON converter
To solve this problem, a custom JSON converter is required. TypedExtensionDataConverter
Elegantly solves this problem. Here is the code:
public class TypedExtensionDataConverter<T> : JsonConverter { // ... [此处省略实现,篇幅原因] }
This converter allows deserializing unknown properties into a typed container, in this case a dictionary of User objects:
[JsonConverter(typeof(TypedExtensionDataConverter<Users>))] class Users { public Users() { this.UserTable = new Dictionary<string, User>(); } [JsonProperty("parentname")] public string ParentName { get; set; } [JsonTypedExtensionData] public Dictionary<string, User> UserTable { get; set; } }
By using JsonTypedExtensionDataAttribute
, the converter knows to serialize/deserialize unknown properties into the UserTable
dictionary.
Complete Solution
With a custom converter, the complete solution looks like this:
class RootObject { [JsonProperty("users")] public Users Users { get; set; } } [JsonConverter(typeof(TypedExtensionDataConverter<Users>))] class Users { // ... [如上实现] } class User { // ... [不变] }
The deserialized JSON structure will now populate RootObject
with the expected values, including sub-objects stored in the Users
dictionary within the UserTable
object.
The above is the detailed content of How to Deserialize JSON with Dynamic Numeric Keys Using Newtonsoft.Json?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



C language data structure: The data representation of the tree and graph is a hierarchical data structure consisting of nodes. Each node contains a data element and a pointer to its child nodes. The binary tree is a special type of tree. Each node has at most two child nodes. The data represents structTreeNode{intdata;structTreeNode*left;structTreeNode*right;}; Operation creates a tree traversal tree (predecision, in-order, and later order) search tree insertion node deletes node graph is a collection of data structures, where elements are vertices, and they can be connected together through edges with right or unrighted data representing neighbors.

Article discusses effective use of rvalue references in C for move semantics, perfect forwarding, and resource management, highlighting best practices and performance improvements.(159 characters)

The truth about file operation problems: file opening failed: insufficient permissions, wrong paths, and file occupied. Data writing failed: the buffer is full, the file is not writable, and the disk space is insufficient. Other FAQs: slow file traversal, incorrect text file encoding, and binary file reading errors.

C 20 ranges enhance data manipulation with expressiveness, composability, and efficiency. They simplify complex transformations and integrate into existing codebases for better performance and maintainability.

The calculation of C35 is essentially combinatorial mathematics, representing the number of combinations selected from 3 of 5 elements. The calculation formula is C53 = 5! / (3! * 2!), which can be directly calculated by loops to improve efficiency and avoid overflow. In addition, understanding the nature of combinations and mastering efficient calculation methods is crucial to solving many problems in the fields of probability statistics, cryptography, algorithm design, etc.

The article discusses dynamic dispatch in C , its performance costs, and optimization strategies. It highlights scenarios where dynamic dispatch impacts performance and compares it with static dispatch, emphasizing trade-offs between performance and

The article discusses using move semantics in C to enhance performance by avoiding unnecessary copying. It covers implementing move constructors and assignment operators, using std::move, and identifies key scenarios and pitfalls for effective appl

C language functions are the basis for code modularization and program building. They consist of declarations (function headers) and definitions (function bodies). C language uses values to pass parameters by default, but external variables can also be modified using address pass. Functions can have or have no return value, and the return value type must be consistent with the declaration. Function naming should be clear and easy to understand, using camel or underscore nomenclature. Follow the single responsibility principle and keep the function simplicity to improve maintainability and readability.
