


[Language] Tracer: Open Telemetry, Golang, and Jagger Simple Implementation
Tracer
Tracer is part of Observability which plays an important role in the implementation of Microservices Architecture and provides a 'Trace' overview of the processes running in an application logic.
Simply put, in Webservice, Tracer will provide an idea of how long the execution time of a logic is by emitting a Trace signal. Later, this Tracer will be visualized and seen in the form of a nested span after transmitting a signal through the Exporter to the Collector. [OpenTelemetry: Traces]
OpenTelemetry
To be able to transmit Traces signals which can later be collected by the Collector, Webservice requires OpenTelemetry as a library which has become a standard Observability protocol which is usually called OpenTelemetry Protocol (OTLP). [OpenTelemetry: Language - Go]
Jaeger
Visualization of Traces signals is really needed to provide an overview of what processes occur in the Webservice. Jaeger is an Open-Source platform that supports OTLP by utilizing the HTTP or gRPC communication protocol. [Jaeger]
Implementation in Golang
The implementation of Tracer in the Golang programming language will implement a simple case where the Webservice will only return data with different response durations. The library that will be used is:
- Chi: HTTP Framework
- OpenTelemetry: Telemetry Signaling
Setup OpenTelemetry as a Telemetry module
Implement the Telemetry module in the pkg/telemetry/telemetry.go directory:
package telemetry import ( "context" "errors" "time" "go.opentelemetry.io/otel" "go.opentelemetry.io/otel/exporters/otlp/otlptrace" "go.opentelemetry.io/otel/exporters/otlp/otlptrace/otlptracegrpc" "go.opentelemetry.io/otel/exporters/otlp/otlptrace/otlptracehttp" "go.opentelemetry.io/otel/sdk/resource" "go.opentelemetry.io/otel/sdk/trace" ) // enumeration constant for which protocol used const ( HTTP uint8 = iota GRPC ) // setup client to connect web-service with Jaeger func SetupTraceClient(ctx context.Context, protocol uint8, endpoint string) otlptrace.Client { switch protocol { case GRPC: return otlptracegrpc.NewClient(otlptracegrpc.WithEndpoint(endpoint), otlptracegrpc.WithInsecure(), otlptracegrpc.WithCompressor("gzip")) default: return otlptracehttp.NewClient(otlptracehttp.WithEndpoint(endpoint), otlptracehttp.WithInsecure(), otlptracehttp.WithCompression(otlptracehttp.NoCompression)) } } func setupTraceProvider(ctx context.Context, traceClient otlptrace.Client) (*trace.TracerProvider, error) { // set resource res, err := resource.New( ctx, resource.WithFromEnv(), ) if err != nil { return nil, err } // init trace exporter traceExporter, err := otlptrace.New(ctx, traceClient) if err != nil { return nil, err } // init trace exporter traceProvider := trace.NewTracerProvider( trace.WithBatcher( traceExporter, trace.WithBatchTimeout(time.Duration(time.Second*3)), ), trace.WithResource(res), // Discover and provide attributes from OTEL_RESOURCE_ATTRIBUTES and OTEL_SERVICE_NAME environment variables. ) return traceProvider, nil } func SetupTelemetrySDK(ctx context.Context, traceClient otlptrace.Client) (func(context.Context) error, error) { var err error var shutdownFuncs []func(context.Context) error shutdown := func(ctx context.Context) error { var err error for _, fn := range shutdownFuncs { err = errors.Join(err, fn(ctx)) } shutdownFuncs = nil return err } handleErr := func(inErr error) { err = errors.Join(inErr, shutdown(ctx)) } traceProvider, err := setupTraceProvider(ctx, traceClient) if err != nil { handleErr(err) return shutdown, err } shutdownFuncs = append(shutdownFuncs, traceProvider.Shutdown) otel.SetTracerProvider(traceProvider) return shutdown, nil }
Then, setup the Telemetry configuration in the main function main.go:
package main import ( "context" "fmt" "net/http" "os" "os/signal" "syscall" "time" "github.com/go-chi/chi/v5" "github.com/wahyurudiyan/medium/otel-jaeger/config" "github.com/wahyurudiyan/medium/otel-jaeger/pkg/telemetry" "github.com/wahyurudiyan/medium/otel-jaeger/router" ) func SetupTelemetry(ctx context.Context, config *config.Config) (func(context.Context) error, error) { otlpCli := telemetry.SetupTraceClient(ctx, telemetry.GRPC, config.JaegerGRPCEndpoint) shutdownFn, err := telemetry.SetupTelemetrySDK(ctx, otlpCli) return shutdownFn, err } func main() { ctx, cancel := context.WithTimeout(context.Background(), 5*time.Second) defer cancel() cfg := config.Get() shutdownFn, err := SetupTelemetry(ctx, cfg) if err != nil { shutdownFn(ctx) panic(err) } r := chi.NewRouter() r.Route("/api", func(r chi.Router) { router.Router(r) }) srv := http.Server{ Addr: "0.0.0.0:8080", Handler: r, } go func() { fmt.Println("Server running at port:", srv.Addr) if err := srv.ListenAndServe(); err != nil && err != http.ErrServerClosed { fmt.Printf("listen: %s\n", err) } }() quit := make(chan os.Signal, 1) signal.Notify(quit, syscall.SIGINT, syscall.SIGTERM) <p>Use Tracer in the handler in the router/router.go file to transmit Traces signals:<br> </p> <pre class="brush:php;toolbar:false">package router import ( "encoding/json" "net/http" "time" "github.com/go-chi/chi/v5" "github.com/wahyurudiyan/medium/otel-jaeger/pkg/random" "go.opentelemetry.io/otel" ) var ( tracer = otel.Tracer("WebServer-Otel-Jaeger") ) func getUserHandler(w http.ResponseWriter, r *http.Request) { _, span := tracer.Start(r.Context(), "GetUser") defer span.End() user := struct { Name string Email string Password string }{ Name: "John Doe", Email: "john@email.com", Password: "Super5ecr3t!", } blob, _ := json.Marshal(&user) sleepDuration := time.Duration(time.Millisecond * time.Duration(random.GenerateRandNum())) time.Sleep(sleepDuration) w.Header().Add("Content-Type", "application/json") w.WriteHeader(http.StatusOK) w.Write(blob) } func Router(router chi.Router) { router.Get("/user", getUserHandler) }
Deployments
Docker configuration for this Build Webservice, utilizing the Multi-Stage Build Image mechanism in the Dockerfile:
FROM golang:1.23.4 AS build WORKDIR /src COPY . . RUN go get -v RUN CGO_ENABLED=0 go build -o /bin/service . FROM alpine:latest WORKDIR /app COPY --from=build /bin/service /bin/service CMD ["/bin/service"]
Next, the image build will be carried out via the docker-compose.yaml file with the following configuration:
services: web-service: container_name: service build: context: . dockerfile: Dockerfile environment: OTEL_SERVICE_NAME: service-otel-jaeger JAEGER_GRPC_ENDPOINT: jaeger:4317 entrypoint: ["service"] ports: - 8080:8080 jaeger: container_name: jaeger image: jaegertracing/all-in-one:latest environment: COLLECTOR_ZIPKIN_HOST_PORT: :9411 ports: - 16686:16686 - 4317:4317 - 4318:4318 - 9411:9411
In service.jaeger.ports, the port exposed is the port for:
- 16686: Jaeger Dashboard
- 4317: Jaeger OTLP Protobuf with gRPC protocol
- 4318: Jaeger OTLP Protobuf/JSON with HTTP protocol
- 9411: Zipkin Collector
Run the application that has been defined in docker-compose.yaml, you can use the command:
docker compose up --build
After the application is running, you can try hitting the application on the endpoint http://127.0.0.1:8080/api/user, if the Webservice and application are connected, the service name will appear as in the picture.
a span will appear to define how long it takes to run a process.
Load Test
Now let's try using the CLI tool hey [https://github.com/rakyll/hey] to run a load-test. The following command can be used to perform a simple load-test:
package telemetry import ( "context" "errors" "time" "go.opentelemetry.io/otel" "go.opentelemetry.io/otel/exporters/otlp/otlptrace" "go.opentelemetry.io/otel/exporters/otlp/otlptrace/otlptracegrpc" "go.opentelemetry.io/otel/exporters/otlp/otlptrace/otlptracehttp" "go.opentelemetry.io/otel/sdk/resource" "go.opentelemetry.io/otel/sdk/trace" ) // enumeration constant for which protocol used const ( HTTP uint8 = iota GRPC ) // setup client to connect web-service with Jaeger func SetupTraceClient(ctx context.Context, protocol uint8, endpoint string) otlptrace.Client { switch protocol { case GRPC: return otlptracegrpc.NewClient(otlptracegrpc.WithEndpoint(endpoint), otlptracegrpc.WithInsecure(), otlptracegrpc.WithCompressor("gzip")) default: return otlptracehttp.NewClient(otlptracehttp.WithEndpoint(endpoint), otlptracehttp.WithInsecure(), otlptracehttp.WithCompression(otlptracehttp.NoCompression)) } } func setupTraceProvider(ctx context.Context, traceClient otlptrace.Client) (*trace.TracerProvider, error) { // set resource res, err := resource.New( ctx, resource.WithFromEnv(), ) if err != nil { return nil, err } // init trace exporter traceExporter, err := otlptrace.New(ctx, traceClient) if err != nil { return nil, err } // init trace exporter traceProvider := trace.NewTracerProvider( trace.WithBatcher( traceExporter, trace.WithBatchTimeout(time.Duration(time.Second*3)), ), trace.WithResource(res), // Discover and provide attributes from OTEL_RESOURCE_ATTRIBUTES and OTEL_SERVICE_NAME environment variables. ) return traceProvider, nil } func SetupTelemetrySDK(ctx context.Context, traceClient otlptrace.Client) (func(context.Context) error, error) { var err error var shutdownFuncs []func(context.Context) error shutdown := func(ctx context.Context) error { var err error for _, fn := range shutdownFuncs { err = errors.Join(err, fn(ctx)) } shutdownFuncs = nil return err } handleErr := func(inErr error) { err = errors.Join(inErr, shutdown(ctx)) } traceProvider, err := setupTraceProvider(ctx, traceClient) if err != nil { handleErr(err) return shutdown, err } shutdownFuncs = append(shutdownFuncs, traceProvider.Shutdown) otel.SetTracerProvider(traceProvider) return shutdown, nil }
The command will run a load-test for 100 requests per second (RPS) for 10 minutes. The results that will appear on the Jaeger UI page will look like the following.
If the load test has finished running, there will be a report of the load test results.
package main import ( "context" "fmt" "net/http" "os" "os/signal" "syscall" "time" "github.com/go-chi/chi/v5" "github.com/wahyurudiyan/medium/otel-jaeger/config" "github.com/wahyurudiyan/medium/otel-jaeger/pkg/telemetry" "github.com/wahyurudiyan/medium/otel-jaeger/router" ) func SetupTelemetry(ctx context.Context, config *config.Config) (func(context.Context) error, error) { otlpCli := telemetry.SetupTraceClient(ctx, telemetry.GRPC, config.JaegerGRPCEndpoint) shutdownFn, err := telemetry.SetupTelemetrySDK(ctx, otlpCli) return shutdownFn, err } func main() { ctx, cancel := context.WithTimeout(context.Background(), 5*time.Second) defer cancel() cfg := config.Get() shutdownFn, err := SetupTelemetry(ctx, cfg) if err != nil { shutdownFn(ctx) panic(err) } r := chi.NewRouter() r.Route("/api", func(r chi.Router) { router.Router(r) }) srv := http.Server{ Addr: "0.0.0.0:8080", Handler: r, } go func() { fmt.Println("Server running at port:", srv.Addr) if err := srv.ListenAndServe(); err != nil && err != http.ErrServerClosed { fmt.Printf("listen: %s\n", err) } }() quit := make(chan os.Signal, 1) signal.Notify(quit, syscall.SIGINT, syscall.SIGTERM) <h2> Github Project </h2> <p>For those who want to try or see the full code, you can clone the following repository: https://github.com/wahyurudiyan/otel-jaeger.</p>
The above is the detailed content of [Language] Tracer: Open Telemetry, Golang, and Jagger Simple Implementation. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



OpenSSL, as an open source library widely used in secure communications, provides encryption algorithms, keys and certificate management functions. However, there are some known security vulnerabilities in its historical version, some of which are extremely harmful. This article will focus on common vulnerabilities and response measures for OpenSSL in Debian systems. DebianOpenSSL known vulnerabilities: OpenSSL has experienced several serious vulnerabilities, such as: Heart Bleeding Vulnerability (CVE-2014-0160): This vulnerability affects OpenSSL 1.0.1 to 1.0.1f and 1.0.2 to 1.0.2 beta versions. An attacker can use this vulnerability to unauthorized read sensitive information on the server, including encryption keys, etc.

The article explains how to use the pprof tool for analyzing Go performance, including enabling profiling, collecting data, and identifying common bottlenecks like CPU and memory issues.Character count: 159

The article discusses writing unit tests in Go, covering best practices, mocking techniques, and tools for efficient test management.

The library used for floating-point number operation in Go language introduces how to ensure the accuracy is...

Queue threading problem in Go crawler Colly explores the problem of using the Colly crawler library in Go language, developers often encounter problems with threads and request queues. �...

The article discusses the go fmt command in Go programming, which formats code to adhere to official style guidelines. It highlights the importance of go fmt for maintaining code consistency, readability, and reducing style debates. Best practices fo

This article introduces a variety of methods and tools to monitor PostgreSQL databases under the Debian system, helping you to fully grasp database performance monitoring. 1. Use PostgreSQL to build-in monitoring view PostgreSQL itself provides multiple views for monitoring database activities: pg_stat_activity: displays database activities in real time, including connections, queries, transactions and other information. pg_stat_replication: Monitors replication status, especially suitable for stream replication clusters. pg_stat_database: Provides database statistics, such as database size, transaction commit/rollback times and other key indicators. 2. Use log analysis tool pgBadg

Backend learning path: The exploration journey from front-end to back-end As a back-end beginner who transforms from front-end development, you already have the foundation of nodejs,...
