


How can I identify and polygonize convex holes within a 2D point cloud using C#?
This code demonstrates an approach to finding convex holes in a set of 2d points. The approach involves creating a bitmap of the point cloud, computing the data density for each cell in the bitmap, creating a list of unused areas (map[][] = 0 or map[][] <= treshold), segmenting the list of unused areas into groups of connected components, and polygonizing each group of connected components to obtain the convex polygons representing the holes.
Here's the C# implementation of the algorithm provided:
using System; using System.Collections.Generic; using System.Linq; using System.Drawing; namespace HoleFinder { class Program { // Define a cell structure for the bitmap public struct Cell { public double x0, x1, y0, y1; // Bounding box of points inside the cell public int count; // Number of points inside the cell } // Define a line structure for representing hole boundaries public struct Line { public double x0, y0, x1, y1; // Line edge points public int id; // Id of the hole to which the line belongs for segmentation/polygonization public int i0, i1, j0, j1; // Index in map[][] } // Compute the bounding box of the point cloud public static (double x0, double x1, double y0, double y1) ComputeBoundingBox(Listpoints) { double x0 = points[0].X; double x1 = points[0].X; double y0 = points[0].Y; double y1 = points[0].Y; foreach (var point in points) { if (point.X < x0) x0 = point.X; if (point.X > x1) x1 = point.X; if (point.Y < y0) y0 = point.Y; if (point.Y > y1) y1 = point.Y; } return (x0, x1, y0, y1); } // Create a bitmap of the point cloud public static int[,] CreateBitmap(List points, (double x0, double x1, double y0, double y1) boundingBox, int N) { // Create a 2D array to represent the bitmap int[,] bitmap = new int[N, N]; // Compute the scale factors for converting point coordinates to bitmap indices double mx = N / (boundingBox.x1 - boundingBox.x0); double my = N / (boundingBox.y1 - boundingBox.y0); // Iterate over the points and increment the corresponding cells in the bitmap foreach (var point in points) { int i = (int)Math.Round((point.X - boundingBox.x0) * mx); int j = (int)Math.Round((point.Y - boundingBox.y0) * my); if (i >= 0 && i < N && j >= 0 && j < N) bitmap[i, j]++; } return bitmap; } // Compute the data density for each cell in the bitmap public static void ComputeDataDensity(int[,] bitmap, Cell[] map) { for (int i = 0; i < map.Length; i++) { map[i].count = 0; } for (int i = 0; i < bitmap.GetLength(0); i++) { for (int j = 0; j < bitmap.GetLength(1); j++) { map[i * bitmap.GetLength(1) + j].count += bitmap[i, j]; } } } // Create a list of unused areas (map[][] = 0 or map[][] <= treshold) public static List<(int i0, int i1, int j0, int j1)> FindUnusedAreasHorizontalVertical(Cell[] map, int N, int treshold = 0) { List<(int i0, int i1, int j0, int j1)> unusedAreas = new List<(int, int, int, int)>(); // Scan horizontally for (int j = 0; j < N; j++) { int i0 = -1; int i1 = -1; for (int i = 0; i < N; i++) { if (map[i * N + j].count == 0 || map[i * N + j].count <= treshold) { if (i0 < 0) i0 = i; } else { if (i0 >= 0) { unusedAreas.Add((i0, i1, j, j)); i0 = -1; i1 = -1; } } } if (i0 >= 0) unusedAreas.Add((i0, i1, j, j)); } // Scan vertically for (int i = 0; i < N; i++) { int j0 = -1; int j1 = -1; for (int j = 0; j < N; j++) { if (map[i * N + j].count == 0 || map[i * N + j].count <= treshold) { if (j0 < 0) j0 = j; } else { if (j0 >= 0) { unusedAreas.Add((i, i, j0, j1)); j0 = -1; j1 = -1; } } } if (j0 >= 0) unusedAreas.Add((i, i, j0, j1)); } return unusedAreas; } // Segment the list of unused areas into groups of connected components public static List > SegmentUnusedAreas(List<(int i0, int i1, int j0, int j1)> unusedAreas) { // Initialize each unused area as a separate group List
> segments = new List
>(); foreach (var unusedArea in unusedAreas) { segments.Add(new List<(int i0, int i1, int j0, int j1)> { unusedArea }); } // Iterate until no more segments can be joined bool joined = true; while (joined) { joined = false; // Check if any two segments intersect or are adjacent for (int i = 0; i < segments.Count; i++) { for (int j = i + 1; j < segments.Count; j++) { // Check for intersection bool intersects = false; foreach (var unusedArea1 in segments[i]) { foreach (var unusedArea2 in segments[j]) { if (unusedArea1.i0 <= unusedArea2.i1 && unusedArea1.i1 >= unusedArea2.i0 && unusedArea1.j0 <= unusedArea2.j1 && unusedArea1.j1 >= unusedArea2.j0) { intersects = true; break; } } if (intersects) break; } // Check for adjacency bool adjacent = false; if (!intersects) { foreach (var unusedArea1 in segments[i]) { foreach (var unusedArea2 in segments[j]) { if (unusedArea1.i0 == unusedArea2.i0 && unusedArea1.i1 == unusedArea2.i1 && ((unusedArea1.j1 == unusedArea2.j0 && Math.Abs(unusedArea1.j0 - unusedArea2.j1) == 1) || (unusedArea1.j0 == unusedArea2.j1 && Math.Abs(unusedArea1.j1 - unusedArea2.j0) == 1))) { adjacent = true; break; } if (unusedArea1.j0 == unusedArea2.j0 && unusedArea1.j1 == unusedArea2.j1
The above is the detailed content of How can I identify and polygonize convex holes within a 2D point cloud using C#?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



C language data structure: The data representation of the tree and graph is a hierarchical data structure consisting of nodes. Each node contains a data element and a pointer to its child nodes. The binary tree is a special type of tree. Each node has at most two child nodes. The data represents structTreeNode{intdata;structTreeNode*left;structTreeNode*right;}; Operation creates a tree traversal tree (predecision, in-order, and later order) search tree insertion node deletes node graph is a collection of data structures, where elements are vertices, and they can be connected together through edges with right or unrighted data representing neighbors.

The truth about file operation problems: file opening failed: insufficient permissions, wrong paths, and file occupied. Data writing failed: the buffer is full, the file is not writable, and the disk space is insufficient. Other FAQs: slow file traversal, incorrect text file encoding, and binary file reading errors.

Article discusses effective use of rvalue references in C for move semantics, perfect forwarding, and resource management, highlighting best practices and performance improvements.(159 characters)

C 20 ranges enhance data manipulation with expressiveness, composability, and efficiency. They simplify complex transformations and integrate into existing codebases for better performance and maintainability.

C language functions are the basis for code modularization and program building. They consist of declarations (function headers) and definitions (function bodies). C language uses values to pass parameters by default, but external variables can also be modified using address pass. Functions can have or have no return value, and the return value type must be consistent with the declaration. Function naming should be clear and easy to understand, using camel or underscore nomenclature. Follow the single responsibility principle and keep the function simplicity to improve maintainability and readability.

The article discusses using move semantics in C to enhance performance by avoiding unnecessary copying. It covers implementing move constructors and assignment operators, using std::move, and identifies key scenarios and pitfalls for effective appl

The article discusses dynamic dispatch in C , its performance costs, and optimization strategies. It highlights scenarios where dynamic dispatch impacts performance and compares it with static dispatch, emphasizing trade-offs between performance and

The calculation of C35 is essentially combinatorial mathematics, representing the number of combinations selected from 3 of 5 elements. The calculation formula is C53 = 5! / (3! * 2!), which can be directly calculated by loops to improve efficiency and avoid overflow. In addition, understanding the nature of combinations and mastering efficient calculation methods is crucial to solving many problems in the fields of probability statistics, cryptography, algorithm design, etc.
