


How can we identify and delineate holes in a 2D point set representing soil sample locations?
Finding Holes in 2D Point Sets
The task is to find the holes in a set of 2D points within a cartesian grid system. The points represent soil sample locations, and holes could include giant rocks, swampy places, or lakes/ponds. The goal is to find the concave polygon that roughly defines these areas, adjusting the sensitivity of the algorithm to control the roughness or smoothness of the polygon.
Solution Approach
Steps:
- Create a density map: Convert the point set to a bitmap or 2D array by scaling and projecting each point onto a grid. Calculate the density (number of points) for each cell.
- Identify holes: Find cells with zero density or below a given threshold.
- Segment hole areas: Create horizontal and vertical lines covering these holes, grouping them by proximity to form hole segments.
- Polygonize hole segments: Convert the segments into concave polygons. Sort the points to ensure proper connectivity and remove duplicates.
Example Implementation (C#):
using System; using System.Collections.Generic; public class Holes { // Density map (2D array) private int[][] map; // List of hole segments (lines) private List<Line> segments; // Polygonized holes (concave polygons) private List<Polygon> holes; // Polygonization tolerance (higher value = smoother polygons) private double tolerance; // Initializes the hole detection algorithm. public Holes(int[][] points, int mapSize, double tolerance) { if (points == null || mapSize <= 0 || tolerance <= 0) { throw new ArgumentException("Invalid arguments"); } // Initialize the variables this.map = new int[mapSize][mapSize]; this.tolerance = tolerance; this.segments = new List<Line>(); this.holes = new List<Polygon>(); // Create density map CreateDensityMap(points, mapSize); } // Identifies holes in the density map. public void FindHoles() { if (map == null || map.Length == 0) { throw new InvalidOperationException("Density map not initialized."); } // Find hole cells List<Cell> holeCells = FindCells(0); // Group hole cells into segments List<List<Line>> lineGroups = GroupLines(holeCells); // Polygonize segments PolygonizeSegments(lineGroups); } // Helper functions for hole detection. private void CreateDensityMap(int[][] points, int mapSize) { // Scale and project points onto a grid for (int i = 0; i < points.Length; i++) { double scaledX = points[i][0] / points[0][0] * mapSize; double scaledY = points[i][1] / points[0][1] * mapSize; int x = (int)scaledX; int y = (int)scaledY; // Increment count in density map map[x][y]++; } } private List<Cell> FindCells(int threshold) { List<Cell> holeCells = new List<Cell>(); for (int i = 0; i < map.Length; i++) { for (int j = 0; j < map[i].Length; j++) { if (map[i][j] == 0 || map[i][j] <= threshold) { holeCells.Add(new Cell(i, j)); } } } return holeCells; } private List<List<Line>> GroupLines(List<Cell> holeCells) { // Group lines by proximity List<List<Line>> lineGroups = new List<List<Line>>(); foreach (Cell holeCell in holeCells) { List<Line> group = null; // Find existing group or create a new one for (int i = 0; i < lineGroups.Count; i++) { if (lineGroups[i].Find(line => line.Proximity(holeCell) <= tolerance) != null) { group = lineGroups[i]; break; } } if (group == null) { group = new List<Line>(); lineGroups.Add(group); } // Add horizontal/vertical lines group.Add(new Line(holeCell.x, holeCell.y, true)); group.Add(new Line(holeCell.x, holeCell.y, false)); } return lineGroups; } private void PolygonizeSegments(List<List<Line>> lineGroups) { foreach (List<Line> lineGroup in lineGroups) { Polygon polygon = PolygonizeSegment(lineGroup); if (polygon != null) { holes.Add(polygon); } } } private Polygon PolygonizeSegment(List<Line> lineSegment) { // Sort lines by angle (convex hull algorithm) lineSegment.Sort((a, b) => a.Angle.CompareTo(b.Angle)); // Remove duplicate lines List<Line> uniqueLines = new List<Line>(); foreach (Line line in lineSegment) { if (uniqueLines.Count == 0 || uniqueLines[uniqueLines.Count - 1].Angle != line.Angle) { uniqueLines.Add(line); } } // Polygonize lines List<Point> points = new List<Point>(); for (int i = 0; i < uniqueLines.Count; i++) { Point point = null; Line currentLine = uniqueLines[i]; if (uniqueLines[(i + 1) % uniqueLines.Count].Angle - currentLine.Angle > Math.PI) { point = currentLine.GetIntersection(uniqueLines[(i + 1) % uniqueLines.Count], true); } else { point = currentLine.GetIntersection(uniqueLines[(i + 1) % uniqueLines.Count], false); } if (point != null) { points.Add(point); } } return new Polygon(points); } // Helper classes for line/polygon representation. private class Line { public int x1, y1, x2, y2; public double angle; public bool isHorizontal; public Line(int x, int y, bool isHorizontal) { if (isHorizontal) { x1 = 0; y1 = y; x2 = map.GetLength(0) - 1; y2 = y; } else { x1 = x; y1 = 0; x2 = x; y2 = map[0].GetLength(0) - 1; } this.angle = Math.Atan2(y2 - y1, x2 - x1); this.isHorizontal = isHorizontal; } public double Angle { get { return angle; } } public double Proximity(Cell cell) { double distX, distY; if (isHorizontal) { distX = cell.x - x1; distY = cell.y - y1; } else { distX = cell.x - x2; distY = cell.y - y2; } return Math.Sqrt(distX * distX + distY * distY); } public Point GetIntersection(Line other, bool isConvex) { double denominator, numerator, tx, ty; if (isHorizontal) { denominator = (other.y2 - other.y1) - (y2 - y1); numerator = ((other.x2 - other.x1) * (y1 - other.y1)) - ((x2 - x1) * (other.y2 - other.y1)); tx = numerator / denominator; ty = other.y1 + ((tx - other.x1) * (other.y2 - other.y1)) / (other.x2 - other.x1); } else { denominator = (other.x2 - other.x1) - (x2 - x1);
The above is the detailed content of How can we identify and delineate holes in a 2D point set representing soil sample locations?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



C language data structure: The data representation of the tree and graph is a hierarchical data structure consisting of nodes. Each node contains a data element and a pointer to its child nodes. The binary tree is a special type of tree. Each node has at most two child nodes. The data represents structTreeNode{intdata;structTreeNode*left;structTreeNode*right;}; Operation creates a tree traversal tree (predecision, in-order, and later order) search tree insertion node deletes node graph is a collection of data structures, where elements are vertices, and they can be connected together through edges with right or unrighted data representing neighbors.

Article discusses effective use of rvalue references in C for move semantics, perfect forwarding, and resource management, highlighting best practices and performance improvements.(159 characters)

The truth about file operation problems: file opening failed: insufficient permissions, wrong paths, and file occupied. Data writing failed: the buffer is full, the file is not writable, and the disk space is insufficient. Other FAQs: slow file traversal, incorrect text file encoding, and binary file reading errors.

C 20 ranges enhance data manipulation with expressiveness, composability, and efficiency. They simplify complex transformations and integrate into existing codebases for better performance and maintainability.

The article discusses dynamic dispatch in C , its performance costs, and optimization strategies. It highlights scenarios where dynamic dispatch impacts performance and compares it with static dispatch, emphasizing trade-offs between performance and

The article discusses using move semantics in C to enhance performance by avoiding unnecessary copying. It covers implementing move constructors and assignment operators, using std::move, and identifies key scenarios and pitfalls for effective appl

C language functions are the basis for code modularization and program building. They consist of declarations (function headers) and definitions (function bodies). C language uses values to pass parameters by default, but external variables can also be modified using address pass. Functions can have or have no return value, and the return value type must be consistent with the declaration. Function naming should be clear and easy to understand, using camel or underscore nomenclature. Follow the single responsibility principle and keep the function simplicity to improve maintainability and readability.

C memory management uses new, delete, and smart pointers. The article discusses manual vs. automated management and how smart pointers prevent memory leaks.
