Table of Contents
A Deep Dive into the HybridSimilarity Algorithm
Core Components
Detailed Breakdown
1. Model Setup
2. Feature Extraction
3. Neural Network Fusion
Practical Application
Conclusion
Home Backend Development Python Tutorial HybridSimilarity Algorithm

HybridSimilarity Algorithm

Jan 21, 2025 pm 10:17 PM

HybridSimilarity Algorithm

A Deep Dive into the HybridSimilarity Algorithm

This article explores the HybridSimilarity algorithm, a sophisticated neural network designed to assess the similarity between text pairs. This hybrid model cleverly integrates lexical, phonetic, semantic, and syntactic comparisons for a comprehensive similarity score.

import numpy as np
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.decomposition import TruncatedSVD
from sentence_transformers import SentenceTransformer
from Levenshtein import ratio as levenshtein_ratio
from phonetics import metaphone
import torch
import torch.nn as nn

class HybridSimilarity(nn.Module):
    def __init__(self):
        super().__init__()
        self.bert = SentenceTransformer('all-MiniLM-L6-v2')
        self.tfidf = TfidfVectorizer()
        self.attention = nn.MultiheadAttention(embed_dim=384, num_heads=4)
        self.fc = nn.Sequential(
            nn.Linear(1152, 256),
            nn.ReLU(),
            nn.LayerNorm(256),
            nn.Linear(256, 1),
            nn.Sigmoid()
        )

    def _extract_features(self, text1, text2):
        # Feature Extraction
        features = {}

        # Lexical Analysis
        features['levenshtein'] = levenshtein_ratio(text1, text2)
        features['jaccard'] = len(set(text1.split()) & set(text2.split())) / len(set(text1.split()) | set(text2.split()))

        # Phonetic Analysis
        features['metaphone'] = 1.0 if metaphone(text1) == metaphone(text2) else 0.0

        # Semantic Analysis (BERT)
        emb1 = self.bert.encode(text1, convert_to_tensor=True)
        emb2 = self.bert.encode(text2, convert_to_tensor=True)
        features['semantic_cosine'] = nn.CosineSimilarity()(emb1, emb2).item()

        # Syntactic Analysis (LSA-TFIDF)
        tfidf_matrix = self.tfidf.fit_transform([text1, text2])
        svd = TruncatedSVD(n_components=1)
        lsa = svd.fit_transform(tfidf_matrix)
        features['lsa_cosine'] = np.dot(lsa[0], lsa[1].T)[0][0]

        # Attention Mechanism
        att_output, _ = self.attention(
            emb1.unsqueeze(0).unsqueeze(0), 
            emb2.unsqueeze(0).unsqueeze(0), 
            emb2.unsqueeze(0).unsqueeze(0)
        )
        features['attention_score'] = att_output.mean().item()

        return torch.tensor(list(features.values())).unsqueeze(0)

    def forward(self, text1, text2):
        features = self._extract_features(text1, text2)
        return self.fc(features).item()

def similarity_coefficient(text1, text2):
    model = HybridSimilarity()
    return model(text1, text2)
Copy after login
Copy after login

Core Components

The HybridSimilarity model relies on these key components:

  • Sentence Transformers: Utilizes pre-trained transformer models for semantic embedding generation.
  • Levenshtein Distance: Calculates lexical similarity based on character-level edits.
  • Metaphone: Determines phonetic similarity.
  • TF-IDF and Truncated SVD: Applies Latent Semantic Analysis (LSA) for syntactic similarity.
  • PyTorch: Provides the framework for building the custom neural network with attention mechanisms and fully connected layers.

Detailed Breakdown

1. Model Setup

The HybridSimilarity class, extending nn.Module, initializes:

  • A BERT-based sentence embedding model (all-MiniLM-L6-v2).
  • A TF-IDF vectorizer.
  • A multi-head attention mechanism.
  • A fully connected network to aggregate features and generate the final similarity score.
self.bert = SentenceTransformer('all-MiniLM-L6-v2')
self.tfidf = TfidfVectorizer()
self.attention = nn.MultiheadAttention(embed_dim=384, num_heads=4)
self.fc = nn.Sequential(
    nn.Linear(1152, 256),
    nn.ReLU(),
    nn.LayerNorm(256),
    nn.Linear(256, 1),
    nn.Sigmoid()
)
Copy after login
Copy after login
2. Feature Extraction

The _extract_features method computes several similarity features:

  • Lexical Similarity:
    • Levenshtein ratio: Quantifies the number of edits (insertions, deletions, substitutions) to transform one text into another.
    • Jaccard index: Measures the overlap of unique words in both texts.
features['levenshtein'] = levenshtein_ratio(text1, text2)
features['jaccard'] = len(set(text1.split()) & set(text2.split())) / len(set(text1.split()) | set(text2.split()))
Copy after login
  • Phonetic Similarity:
    • Metaphone encoding: Compares phonetic representations.
features['metaphone'] = 1.0 if metaphone(text1) == metaphone(text2) else 0.0
Copy after login
  • Semantic Similarity:
    • BERT embeddings are generated, and cosine similarity is calculated.
emb1 = self.bert.encode(text1, convert_to_tensor=True)
emb2 = self.bert.encode(text2, convert_to_tensor=True)
features['semantic_cosine'] = nn.CosineSimilarity()(emb1, emb2).item()
Copy after login
  • Syntactic Similarity:
    • TF-IDF vectorizes the text, and LSA is applied using TruncatedSVD.
tfidf_matrix = self.tfidf.fit_transform([text1, text2])
svd = TruncatedSVD(n_components=1)
lsa = svd.fit_transform(tfidf_matrix)
features['lsa_cosine'] = np.dot(lsa[0], lsa[1].T)[0][0]
Copy after login
  • Attention-based Feature:
    • Multi-head attention processes the embeddings, and the average attention score is used.
att_output, _ = self.attention(
    emb1.unsqueeze(0).unsqueeze(0),
    emb2.unsqueeze(0).unsqueeze(0),
    emb2.unsqueeze(0).unsqueeze(0)
)
features['attention_score'] = att_output.mean().item()
Copy after login
3. Neural Network Fusion

The extracted features are combined and fed into a fully connected neural network. This network outputs a similarity score (0-1).

import numpy as np
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.decomposition import TruncatedSVD
from sentence_transformers import SentenceTransformer
from Levenshtein import ratio as levenshtein_ratio
from phonetics import metaphone
import torch
import torch.nn as nn

class HybridSimilarity(nn.Module):
    def __init__(self):
        super().__init__()
        self.bert = SentenceTransformer('all-MiniLM-L6-v2')
        self.tfidf = TfidfVectorizer()
        self.attention = nn.MultiheadAttention(embed_dim=384, num_heads=4)
        self.fc = nn.Sequential(
            nn.Linear(1152, 256),
            nn.ReLU(),
            nn.LayerNorm(256),
            nn.Linear(256, 1),
            nn.Sigmoid()
        )

    def _extract_features(self, text1, text2):
        # Feature Extraction
        features = {}

        # Lexical Analysis
        features['levenshtein'] = levenshtein_ratio(text1, text2)
        features['jaccard'] = len(set(text1.split()) & set(text2.split())) / len(set(text1.split()) | set(text2.split()))

        # Phonetic Analysis
        features['metaphone'] = 1.0 if metaphone(text1) == metaphone(text2) else 0.0

        # Semantic Analysis (BERT)
        emb1 = self.bert.encode(text1, convert_to_tensor=True)
        emb2 = self.bert.encode(text2, convert_to_tensor=True)
        features['semantic_cosine'] = nn.CosineSimilarity()(emb1, emb2).item()

        # Syntactic Analysis (LSA-TFIDF)
        tfidf_matrix = self.tfidf.fit_transform([text1, text2])
        svd = TruncatedSVD(n_components=1)
        lsa = svd.fit_transform(tfidf_matrix)
        features['lsa_cosine'] = np.dot(lsa[0], lsa[1].T)[0][0]

        # Attention Mechanism
        att_output, _ = self.attention(
            emb1.unsqueeze(0).unsqueeze(0), 
            emb2.unsqueeze(0).unsqueeze(0), 
            emb2.unsqueeze(0).unsqueeze(0)
        )
        features['attention_score'] = att_output.mean().item()

        return torch.tensor(list(features.values())).unsqueeze(0)

    def forward(self, text1, text2):
        features = self._extract_features(text1, text2)
        return self.fc(features).item()

def similarity_coefficient(text1, text2):
    model = HybridSimilarity()
    return model(text1, text2)
Copy after login
Copy after login

Practical Application

The similarity_coefficient function initializes the model and computes the similarity between two input texts.

self.bert = SentenceTransformer('all-MiniLM-L6-v2')
self.tfidf = TfidfVectorizer()
self.attention = nn.MultiheadAttention(embed_dim=384, num_heads=4)
self.fc = nn.Sequential(
    nn.Linear(1152, 256),
    nn.ReLU(),
    nn.LayerNorm(256),
    nn.Linear(256, 1),
    nn.Sigmoid()
)
Copy after login
Copy after login

This returns a float between 0 and 1, representing the similarity.

Conclusion

The HybridSimilarity algorithm offers a robust approach to text similarity by integrating various aspects of text comparison. Its combination of lexical, phonetic, semantic, and syntactic analysis allows for a more comprehensive and nuanced understanding of text similarity, making it suitable for various applications, including duplicate detection, text clustering, and information retrieval.

The above is the detailed content of HybridSimilarity Algorithm. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Hot Topics

Java Tutorial
1662
14
PHP Tutorial
1261
29
C# Tutorial
1234
24
Python vs. C  : Applications and Use Cases Compared Python vs. C : Applications and Use Cases Compared Apr 12, 2025 am 12:01 AM

Python is suitable for data science, web development and automation tasks, while C is suitable for system programming, game development and embedded systems. Python is known for its simplicity and powerful ecosystem, while C is known for its high performance and underlying control capabilities.

Python: Games, GUIs, and More Python: Games, GUIs, and More Apr 13, 2025 am 12:14 AM

Python excels in gaming and GUI development. 1) Game development uses Pygame, providing drawing, audio and other functions, which are suitable for creating 2D games. 2) GUI development can choose Tkinter or PyQt. Tkinter is simple and easy to use, PyQt has rich functions and is suitable for professional development.

The 2-Hour Python Plan: A Realistic Approach The 2-Hour Python Plan: A Realistic Approach Apr 11, 2025 am 12:04 AM

You can learn basic programming concepts and skills of Python within 2 hours. 1. Learn variables and data types, 2. Master control flow (conditional statements and loops), 3. Understand the definition and use of functions, 4. Quickly get started with Python programming through simple examples and code snippets.

How Much Python Can You Learn in 2 Hours? How Much Python Can You Learn in 2 Hours? Apr 09, 2025 pm 04:33 PM

You can learn the basics of Python within two hours. 1. Learn variables and data types, 2. Master control structures such as if statements and loops, 3. Understand the definition and use of functions. These will help you start writing simple Python programs.

Python vs. C  : Learning Curves and Ease of Use Python vs. C : Learning Curves and Ease of Use Apr 19, 2025 am 12:20 AM

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.

Python and Time: Making the Most of Your Study Time Python and Time: Making the Most of Your Study Time Apr 14, 2025 am 12:02 AM

To maximize the efficiency of learning Python in a limited time, you can use Python's datetime, time, and schedule modules. 1. The datetime module is used to record and plan learning time. 2. The time module helps to set study and rest time. 3. The schedule module automatically arranges weekly learning tasks.

Python: Exploring Its Primary Applications Python: Exploring Its Primary Applications Apr 10, 2025 am 09:41 AM

Python is widely used in the fields of web development, data science, machine learning, automation and scripting. 1) In web development, Django and Flask frameworks simplify the development process. 2) In the fields of data science and machine learning, NumPy, Pandas, Scikit-learn and TensorFlow libraries provide strong support. 3) In terms of automation and scripting, Python is suitable for tasks such as automated testing and system management.

Python: Automation, Scripting, and Task Management Python: Automation, Scripting, and Task Management Apr 16, 2025 am 12:14 AM

Python excels in automation, scripting, and task management. 1) Automation: File backup is realized through standard libraries such as os and shutil. 2) Script writing: Use the psutil library to monitor system resources. 3) Task management: Use the schedule library to schedule tasks. Python's ease of use and rich library support makes it the preferred tool in these areas.

See all articles