


How Can I Modify a PL/pgSQL Function to Return the Results of a Dynamic SQL Query?
Modify PL/pgSQL function to return query results
Background
Initially, you create a function that outputs a well-formed PostgreSQL SELECT query string. Now you want to execute the generated SELECT statement directly against the database and retrieve its results.
Methods: Dynamic SQL and Return Types
Dynamic SQL
To execute dynamic SQL, we use the EXECUTE command. Since you are not using a cursor, you can use the RETURN QUERY EXECUTE syntax.
Return Type
The challenge is returning records of undefined type since the function needs to declare the return type. We will consider various approaches depending on the specific characteristics of the data.
Simple solution using fixed return type
Assuming fixed return types for timestamp, text, and text columns, we can define the function as follows:
CREATE FUNCTION data_of(_id integer) RETURNS TABLE (datahora timestamp, col2 text, col3 text) AS $$ DECLARE _sensors text := 'col1, col2, col3'; _type text := 'foo'; BEGIN RETURN QUERY EXECUTE format( 'SELECT datahora, %s FROM %s WHERE id = ORDER BY datahora', _sensors, _type ) USING _id; END $$ LANGUAGE plpgsql;
Variable number of columns of the same type
If you have a variable number of columns, and all columns are of the same type (e.g. double), we can use the ARRAY type to nest the values:
CREATE FUNCTION data_of(_id integer) RETURNS TABLE (datahora timestamp, names text[], values float8[]) AS $$ DECLARE _sensors text := 'col1, col2, col3'; _type text := 'foo'; BEGIN RETURN QUERY EXECUTE format( 'SELECT datahora , string_to_array(, ',') -- AS names , ARRAY[%s] -- AS values FROM %s WHERE id = ORDER BY datahora', _sensors, _type ) USING _sensors, _id; END $$ LANGUAGE plpgsql;
A variety of complete table types
To return all columns of the table, we can use polymorphic types:
CREATE FUNCTION data_of(_tbl_type anyelement, _id int) RETURNS SETOF anyelement AS $$ BEGIN RETURN QUERY EXECUTE format( 'SELECT * FROM %I -- pg_typeof returns regtype, quoted automatically WHERE id = ORDER BY datahora', pg_typeof(_tbl_type) ) USING _id; END $$ LANGUAGE plpgsql;
Note: In the second example, the string_to_array
function requires a delimiter, and ,
is added here as the delimiter. The third example uses the %I
formatting identifier to handle table names in a safer way to prevent SQL injection. Which method you choose depends on your specific needs and data structure. If possible, providing more information about your table structure and desired results can help me provide a more precise and efficient solution.
The above is the detailed content of How Can I Modify a PL/pgSQL Function to Return the Results of a Dynamic SQL Query?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











Full table scanning may be faster in MySQL than using indexes. Specific cases include: 1) the data volume is small; 2) when the query returns a large amount of data; 3) when the index column is not highly selective; 4) when the complex query. By analyzing query plans, optimizing indexes, avoiding over-index and regularly maintaining tables, you can make the best choices in practical applications.

MySQL is an open source relational database management system. 1) Create database and tables: Use the CREATEDATABASE and CREATETABLE commands. 2) Basic operations: INSERT, UPDATE, DELETE and SELECT. 3) Advanced operations: JOIN, subquery and transaction processing. 4) Debugging skills: Check syntax, data type and permissions. 5) Optimization suggestions: Use indexes, avoid SELECT* and use transactions.

MySQL is suitable for beginners because it is simple to install, powerful and easy to manage data. 1. Simple installation and configuration, suitable for a variety of operating systems. 2. Support basic operations such as creating databases and tables, inserting, querying, updating and deleting data. 3. Provide advanced functions such as JOIN operations and subqueries. 4. Performance can be improved through indexing, query optimization and table partitioning. 5. Support backup, recovery and security measures to ensure data security and consistency.

The main role of MySQL in web applications is to store and manage data. 1.MySQL efficiently processes user information, product catalogs, transaction records and other data. 2. Through SQL query, developers can extract information from the database to generate dynamic content. 3.MySQL works based on the client-server model to ensure acceptable query speed.

MySQL is an open source relational database management system, mainly used to store and retrieve data quickly and reliably. Its working principle includes client requests, query resolution, execution of queries and return results. Examples of usage include creating tables, inserting and querying data, and advanced features such as JOIN operations. Common errors involve SQL syntax, data types, and permissions, and optimization suggestions include the use of indexes, optimized queries, and partitioning of tables.

InnoDB uses redologs and undologs to ensure data consistency and reliability. 1.redologs record data page modification to ensure crash recovery and transaction persistence. 2.undologs records the original data value and supports transaction rollback and MVCC.

MySQL's position in databases and programming is very important. It is an open source relational database management system that is widely used in various application scenarios. 1) MySQL provides efficient data storage, organization and retrieval functions, supporting Web, mobile and enterprise-level systems. 2) It uses a client-server architecture, supports multiple storage engines and index optimization. 3) Basic usages include creating tables and inserting data, and advanced usages involve multi-table JOINs and complex queries. 4) Frequently asked questions such as SQL syntax errors and performance issues can be debugged through the EXPLAIN command and slow query log. 5) Performance optimization methods include rational use of indexes, optimized query and use of caches. Best practices include using transactions and PreparedStatemen

MySQL is chosen for its performance, reliability, ease of use, and community support. 1.MySQL provides efficient data storage and retrieval functions, supporting multiple data types and advanced query operations. 2. Adopt client-server architecture and multiple storage engines to support transaction and query optimization. 3. Easy to use, supports a variety of operating systems and programming languages. 4. Have strong community support and provide rich resources and solutions.
