How Can I Efficiently Parse a Flat Table into a Nested Tree Structure?
Introduction
The flat surface of the tree -shaped hierarchical structure is highly transformed into an nested structure, which can be implemented in multiple methods. This article discusses a minimalist solution that uses the basic data structure and considers the alternative database storage method for optimizing the tree -shaped representation.
The minimalist method of parsing
Assume that a table contains the following data:
This table is analyzed as a tree structure:
Id | Name | ParentId | Order |
---|---|---|---|
1 | 'Node 1' | 0 | 10 |
2 | 'Node 1.1' | 1 | 10 |
3 | 'Node 2' | 0 | 20 |
4 | 'Node 1.1.1' | 2 | 10 |
5 | 'Node 2.1' | 3 | 10 |
6 | 'Node 1.2' | 1 | 20 |
- Create a dictionary:
- Map the ID of each node to its corresponding data.
-
Build a tree:
Create a sub -node by recursively and add it to the corresponding parent node to build a tree. -
For each non -root node, use its Parentid to find its parent node in the dictionary. Add the node as the child node of the parent node.
- Sorting node: Sort the sub -nodes of each node according to the order of the child node.
-
The pseudo code of this method:
The alternative storage method of the tree structure in SQL
Closure table:
Another method of storing the tree structure in the relationship database is to use a closure table, which contains a separate table, which contains the ancestral node ID and the offspring node ID column. This allows easy query relationships.<code>创建字典(table) def 获取根节点(): 根节点 = [] 对于 id, 节点 in 字典.items(): 如果 节点['ParentId'] == 0: 根节点.append(节点) 返回 根节点 def 构建树(根节点): 对于 根节点 in 根节点: 子节点 = [] 对于 id, 节点 in 字典.items(): 如果 节点['ParentId'] == 根节点['Id']: 子节点.append(节点) 子节点.sort(key=lambda x: x['Order']) 根节点['children'] = 子节点 构建树(子节点) def 打印树(根节点): 对于 根节点 in 根节点: 打印(根节点['Name']) 如果 'children' in 根节点: 打印树(根节点['children'])</code>
Inquiries using the closure table:
Embeds:
The nested set involves the location information of each node in the storage tree in a single table. This method allows efficient scope -based queries of nodes in a given level or sub -tree.
Conclusion Although the examples provided using flat tables are used as input, the proposed methods are very suitable for different data structures and storage methods. By using appropriate technology, you can efficiently analyze the tree -shaped hierarchical structure and ensure data integrity and easy access.
The above is the detailed content of How Can I Efficiently Parse a Flat Table into a Nested Tree Structure?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











Full table scanning may be faster in MySQL than using indexes. Specific cases include: 1) the data volume is small; 2) when the query returns a large amount of data; 3) when the index column is not highly selective; 4) when the complex query. By analyzing query plans, optimizing indexes, avoiding over-index and regularly maintaining tables, you can make the best choices in practical applications.

MySQL is an open source relational database management system. 1) Create database and tables: Use the CREATEDATABASE and CREATETABLE commands. 2) Basic operations: INSERT, UPDATE, DELETE and SELECT. 3) Advanced operations: JOIN, subquery and transaction processing. 4) Debugging skills: Check syntax, data type and permissions. 5) Optimization suggestions: Use indexes, avoid SELECT* and use transactions.

MySQL is suitable for beginners because it is simple to install, powerful and easy to manage data. 1. Simple installation and configuration, suitable for a variety of operating systems. 2. Support basic operations such as creating databases and tables, inserting, querying, updating and deleting data. 3. Provide advanced functions such as JOIN operations and subqueries. 4. Performance can be improved through indexing, query optimization and table partitioning. 5. Support backup, recovery and security measures to ensure data security and consistency.

The main role of MySQL in web applications is to store and manage data. 1.MySQL efficiently processes user information, product catalogs, transaction records and other data. 2. Through SQL query, developers can extract information from the database to generate dynamic content. 3.MySQL works based on the client-server model to ensure acceptable query speed.

InnoDB uses redologs and undologs to ensure data consistency and reliability. 1.redologs record data page modification to ensure crash recovery and transaction persistence. 2.undologs records the original data value and supports transaction rollback and MVCC.

MySQL is an open source relational database management system, mainly used to store and retrieve data quickly and reliably. Its working principle includes client requests, query resolution, execution of queries and return results. Examples of usage include creating tables, inserting and querying data, and advanced features such as JOIN operations. Common errors involve SQL syntax, data types, and permissions, and optimization suggestions include the use of indexes, optimized queries, and partitioning of tables.

MySQL's position in databases and programming is very important. It is an open source relational database management system that is widely used in various application scenarios. 1) MySQL provides efficient data storage, organization and retrieval functions, supporting Web, mobile and enterprise-level systems. 2) It uses a client-server architecture, supports multiple storage engines and index optimization. 3) Basic usages include creating tables and inserting data, and advanced usages involve multi-table JOINs and complex queries. 4) Frequently asked questions such as SQL syntax errors and performance issues can be debugged through the EXPLAIN command and slow query log. 5) Performance optimization methods include rational use of indexes, optimized query and use of caches. Best practices include using transactions and PreparedStatemen

MySQL is chosen for its performance, reliability, ease of use, and community support. 1.MySQL provides efficient data storage and retrieval functions, supporting multiple data types and advanced query operations. 2. Adopt client-server architecture and multiple storage engines to support transaction and query optimization. 3. Easy to use, supports a variety of operating systems and programming languages. 4. Have strong community support and provide rich resources and solutions.
