In modern application development, performance and scalability are key factors that determine the success or failure of the system. Caching plays a key role in improving these by reducing database load, reducing latency and ensuring a seamless user experience. However, no single caching solution is perfect for all scenarios.
Local caches (such as Caffeine) provide blazing fast speeds because they run in memory and close to the application. They are great for reducing response times for frequently accessed data. Distributed caches (such as Redisson's Redisson), on the other hand, provide scalability and consistency across multiple instances of an application. Distributed caching ensures that all nodes in a distributed system have access to the same latest data, which is critical in a multi-node environment. However, relying solely on local or distributed caching can bring challenges:
becomes an effective solution. By combining the advantages of local and distributed caching using Caffeine and Redisson, you get the high performance of local caching speeds while maintaining consistency and scalability with distributed caching sex. This article explores how to implement hybrid caching in Spring Boot applications to ensure optimal performance and data consistency.
Implementation steps
pom.xml
<code class="language-xml"><dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-cache</artifactId> </dependency> <dependency> <groupId>com.github.ben-manes.caffeine</groupId> <artifactId>caffeine</artifactId> <version>3.2.0</version> </dependency> <dependency> <groupId>org.redisson</groupId> <artifactId>redisson</artifactId> <version>3.43.0</version> </dependency></code>
Detailed explanation of key components
<code class="language-java">@Configuration @EnableCaching public class CacheConfig implements CachingConfigurer { @Value("${cache.server.address}") private String cacheAddress; @Value("${cache.server.password}") private String cachePassword; @Value("${cache.server.expirationTime:60}") private Long cacheExpirationTime; @Bean(destroyMethod = "shutdown") RedissonClient redisson() { Config config = new Config(); config.useSingleServer().setAddress(cacheAddress).setPassword(cachePassword.trim()); config.setLazyInitialization(true); return Redisson.create(config); } @Bean @Override public CacheManager cacheManager() { CaffeineCacheManager cacheManager = new CaffeineCacheManager(); cacheManager.setCaffeine(Caffeine.newBuilder().expireAfterWrite(cacheExpirationTime, TimeUnit.MINUTES)); return cacheManager; } @Bean public CacheEntryRemovedListener cacheEntryRemovedListener() { return new CacheEntryRemovedListener(cacheManager()); } @Bean @Override public CacheResolver cacheResolver() { return new LocalCacheResolver(cacheManager(), redisson(), cacheEntryRemovedListener()); } }</code>
to enable in-memory caching and configure the expiration policy via CacheManager
. CaffeineCacheManager
Caffeine
2. CacheResolver
connects local (Caffeine) and distributed (Redisson) caches to ensure that the hybrid strategy is effectively applied. CacheResolver
LocalCacheResolver
<code class="language-java">@Component public class LocalCacheResolver implements CacheResolver { // ... (代码与原文相同) ... }</code>
<code class="language-java">public class LocalCache implements Cache { // ... (代码与原文相同) ... }</code>
<code class="language-xml"><dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-cache</artifactId> </dependency> <dependency> <groupId>com.github.ben-manes.caffeine</groupId> <artifactId>caffeine</artifactId> <version>3.2.0</version> </dependency> <dependency> <groupId>org.redisson</groupId> <artifactId>redisson</artifactId> <version>3.43.0</version> </dependency></code>
When a method annotated with @Cacheable
is executed, the put
method will be called. This stores the data in a local cache (Caffeine) and a distributed cache (Redis):
<code class="language-java">@Configuration @EnableCaching public class CacheConfig implements CachingConfigurer { @Value("${cache.server.address}") private String cacheAddress; @Value("${cache.server.password}") private String cachePassword; @Value("${cache.server.expirationTime:60}") private Long cacheExpirationTime; @Bean(destroyMethod = "shutdown") RedissonClient redisson() { Config config = new Config(); config.useSingleServer().setAddress(cacheAddress).setPassword(cachePassword.trim()); config.setLazyInitialization(true); return Redisson.create(config); } @Bean @Override public CacheManager cacheManager() { CaffeineCacheManager cacheManager = new CaffeineCacheManager(); cacheManager.setCaffeine(Caffeine.newBuilder().expireAfterWrite(cacheExpirationTime, TimeUnit.MINUTES)); return cacheManager; } @Bean public CacheEntryRemovedListener cacheEntryRemovedListener() { return new CacheEntryRemovedListener(cacheManager()); } @Bean @Override public CacheResolver cacheResolver() { return new LocalCacheResolver(cacheManager(), redisson(), cacheEntryRemovedListener()); } }</code>
To retrieve data, the system first checks whether the key exists in the local cache. If the key is not found, the distributed cache is queried. If the value exists in the distributed cache, it is added to the local cache for faster subsequent access:
<code class="language-java">@Component public class LocalCacheResolver implements CacheResolver { // ... (代码与原文相同) ... }</code>
When a cache eviction occurs (for example, via the @CacheEvict
annotation), the key will be removed from the distributed cache. Local caches of other nodes will be notified via CacheEntryRemovedListener
to remove the same key:
<code class="language-java">public class LocalCache implements Cache { // ... (代码与原文相同) ... }</code>
Hybrid cache combines the speed of local memory cache with the scalability and consistency of distributed cache. This approach addresses the limitations of using only local or distributed caches. By integrating Caffeine and Redisson in your Spring Boot application, you can achieve significant performance improvements while ensuring data consistency between application nodes.
Using CacheEntryRemovedListener
and CacheResolver
ensures that cache entries are kept in sync across all caching tiers, providing an efficient and reliable caching strategy for modern scalable applications. This hybrid approach is especially valuable in distributed systems, where both performance and consistency are critical.
The above is the detailed content of Hybrid Cache Strategy in Spring Boot: A Guide to Redisson and Caffeine Integration. For more information, please follow other related articles on the PHP Chinese website!