Project Overview
Chatish is an innovative Streamlit web application that demonstrates the power of contextual retrieval using large language models, specifically Cohere's Command R model. This project demonstrates how modern artificial intelligence can transform document interaction through intelligent, context-aware conversations.
Architectural Components
The application is built around four main Python modules:
<code>graph TD A[用户界面 - Streamlit] --> B[文件上传] A --> C[聊天输入] B --> D[文件处理器] C --> E[聊天管理器] D --> F[Cohere 客户端] E --> F F --> G[AI 响应生成] G --> A</code>
Key implementation details
The FileHandler class demonstrates a flexible approach to document handling:
def process_file(self, uploaded_file): if uploaded_file.type == "application/pdf": return self.extract_text_from_pdf(uploaded_file) else: # 可扩展以支持未来的文件类型 return uploaded_file.read().decode()
CohereClient build context-aware hints:
def build_prompt(self, user_input, context=None): context_str = f"{context}\n\n" if context else "" return ( f"{context_str}" f"问题:{user_input}\n" f"除非被告知要详细说明,否则请直接给出答案,并使用可用的指标和历史数据。" )
Chat management includes smart history tracking:
def chat(self, user_input, context=None): # 保持对话历史记录 self.conversation_history.append({"role": "user", "content": user_input}) # 限制历史记录以防止上下文溢出 if len(self.conversation_history) > 10: self.conversation_history = self.conversation_history[-10:]
Technical Challenges Solved
Technology stack
Performance Notes
max_tokens
parameterFuture Roadmap
Deployment Notes
<code>cohere==5.13.11 streamlit==1.41.1 PyPDF2==3.0.1</code>
# 创建虚拟环境 python3 -m venv chatish_env # 激活环境 source chatish_env/bin/activate # 安装依赖项 pip install -r requirements.txt # 运行应用程序 streamlit run app.py
Safety and ethical considerations
Conclusion
Chatish represents a practical implementation of contextual AI interaction that bridges advanced language models with user-friendly document analysis.
Explore, experiment, expand!
GitHub Repository
The above is the detailed content of Creating a chatbot with contextual retrieval using Cohere command-r and Streamlit. For more information, please follow other related articles on the PHP Chinese website!