


Why Does WaitForExit Stall When Redirecting Standard Output with Large Data Streams?
When performing the process, it may encounter issues related to restrictions with
buffer. Specifically, when the deduction, if the output size exceeds a certain threshold (such as 7MB), the program may be hung at an indefinite time during the ProcessStartInfo
period. StandardOutput
StandardOutput
The reason WaitForExit
When the dependent and the internal buffer is full, this behavior will occur. If the call process is waiting for the target process before reading , the target process will be blocked when trying to write a full buffer area to prevent it from the end. Instead, if the call process uses retrieval output, if the target process is not turned off (for example, if it does not end or its
stream is blocked), it may be blocked.
StandardOutput
Solution StandardOutput
ReadToEnd
StandardOutput
In order to solve this problem, use asynchronous reading to prevent the buffer from achieving capacity. The following code example demonstrates how to perform this operation: StandardError
This solution uses asynchronous callback to process data received from and to ensure that the internal buffer zone will not be full and prevent dead locks.
Note:
In order to avoidusing (Process process = new Process()) { process.StartInfo.FileName = filename; process.StartInfo.Arguments = arguments; process.StartInfo.UseShellExecute = false; process.StartInfo.RedirectStandardOutput = true; process.StartInfo.RedirectStandardError = true; StringBuilder output = new StringBuilder(); StringBuilder error = new StringBuilder(); using (AutoResetEvent outputWaitHandle = new AutoResetEvent(false)) using (AutoResetEvent errorWaitHandle = new AutoResetEvent(false)) { process.OutputDataReceived += (sender, e) => { if (e.Data == null) { outputWaitHandle.Set(); } else { output.AppendLine(e.Data); } }; process.ErrorDataReceived += (sender, e) => { if (e.Data == null) { errorWaitHandle.Set(); } else { error.AppendLine(e.Data); } }; process.Start(); process.BeginOutputReadLine(); process.BeginErrorReadLine(); if (process.WaitForExit(timeout) && outputWaitHandle.WaitOne(timeout) && errorWaitHandle.WaitOne(timeout)) { // 进程已完成。在此处检查 process.ExitCode。 } else { // 超时。 } } }
property of the process before the output of the access process or the error flow. StandardOutput
The above is the detailed content of Why Does WaitForExit Stall When Redirecting Standard Output with Large Data Streams?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



C language data structure: The data representation of the tree and graph is a hierarchical data structure consisting of nodes. Each node contains a data element and a pointer to its child nodes. The binary tree is a special type of tree. Each node has at most two child nodes. The data represents structTreeNode{intdata;structTreeNode*left;structTreeNode*right;}; Operation creates a tree traversal tree (predecision, in-order, and later order) search tree insertion node deletes node graph is a collection of data structures, where elements are vertices, and they can be connected together through edges with right or unrighted data representing neighbors.

The truth about file operation problems: file opening failed: insufficient permissions, wrong paths, and file occupied. Data writing failed: the buffer is full, the file is not writable, and the disk space is insufficient. Other FAQs: slow file traversal, incorrect text file encoding, and binary file reading errors.

Article discusses effective use of rvalue references in C for move semantics, perfect forwarding, and resource management, highlighting best practices and performance improvements.(159 characters)

C 20 ranges enhance data manipulation with expressiveness, composability, and efficiency. They simplify complex transformations and integrate into existing codebases for better performance and maintainability.

C language functions are the basis for code modularization and program building. They consist of declarations (function headers) and definitions (function bodies). C language uses values to pass parameters by default, but external variables can also be modified using address pass. Functions can have or have no return value, and the return value type must be consistent with the declaration. Function naming should be clear and easy to understand, using camel or underscore nomenclature. Follow the single responsibility principle and keep the function simplicity to improve maintainability and readability.

The article discusses using move semantics in C to enhance performance by avoiding unnecessary copying. It covers implementing move constructors and assignment operators, using std::move, and identifies key scenarios and pitfalls for effective appl

The article discusses dynamic dispatch in C , its performance costs, and optimization strategies. It highlights scenarios where dynamic dispatch impacts performance and compares it with static dispatch, emphasizing trade-offs between performance and

C memory management uses new, delete, and smart pointers. The article discusses manual vs. automated management and how smart pointers prevent memory leaks.
