RandomCrop in PyTorch (1)
Buy Me a Coffee☕
*Memos:
- My post explains OxfordIIITPet().
RandomCrop() can crop an image randomly as shown below:
*Memos:
- The 1st argument for initialization is size(Required-Type:int or tuple/list(int) or size()):
*Memos:
- It's [height, width].
- It must be 1 <= x.
- A tuple/list must be the 1D with 1 or 2 elements.
- A single value(int or tuple/list(int)) means [size, size].
- The 2nd argument for initialization is padding(Optional-Default:None-Type:int or tuple/list(int)):
*Memos:
- It's [left, top, right, bottom] which can be converted from [left-right, top-bottom] or [left-top-right-bottom].
- A tuple/list must be the 1D with 1, 2 or 4 elements.
- A single value(int or tuple/list(int)) means [padding, padding, padding, padding].
- Double values(tuple/list(int)) means [padding[0], padding[1], padding[0], padding[1]].
- The 3rd argument for initialization is pad_if_needed(Optional-Default:False-Type:bool):
- If it's False and size is smaller than an original image or the padded image by padding, there is error.
- If it's True and size is smaller than an original image or the padded image by padding, there is no error, then the image is randomly padded to become size.
- The 4th argument for initialization is fill(Optional-Default:0-Type:int, float or tuple/list(int or float)):
*Memos:
- It can change the background of an image. *The background can be seen when an image is positively padded.
- A tuple/list must be the 1D with 1 or 3 elements.
- The 5th argument for initialization is padding_mode(Optional-Default:'constant'-Type:str). *'constant', 'edge', 'reflect' or 'symmetric' can be set to it.
- The 1st argument is img(Required-Type:PIL Image or tensor(int)):
*Memos:
- A tensor must be 2D or 3D.
- Don't use img=.
- v2 is recommended to use according to V1 or V2? Which one should I use?.
from torchvision.datasets import OxfordIIITPet from torchvision.transforms.v2 import RandomCrop randomcrop = RandomCrop(size=100) randomcrop = RandomCrop(size=100, padding=None, pad_if_needed=False, fill=0, padding_mode='constant') randomcrop # RandomCrop(size=(100, 100), # pad_if_needed=False, # fill=0, # padding_mode=constant) randomcrop.size # (100, 100) print(randomcrop.padding) # None randomcrop.pad_if_needed # False randomcrop.fill # 0 randomcrop.padding_mode # 'constant' origin_data = OxfordIIITPet( root="data", transform=None ) s300_data = OxfordIIITPet( # `s` is size. root="data", transform=RandomCrop(size=300) # transform=RandomCrop(size=[300, 300]) ) s200_data = OxfordIIITPet( root="data", transform=RandomCrop(size=200) ) s100_data = OxfordIIITPet( root="data", transform=RandomCrop(size=100) ) s50_data = OxfordIIITPet( root="data", transform=RandomCrop(size=50) ) s10_data = OxfordIIITPet( root="data", transform=RandomCrop(size=10) ) s1_data = OxfordIIITPet( root="data", transform=RandomCrop(size=1) ) s200_300_data = OxfordIIITPet( root="data", transform=RandomCrop(size=[200, 300]) ) s300_200_data = OxfordIIITPet( root="data", transform=RandomCrop(size=[300, 200]) ) s300p100_data = OxfordIIITPet( # `p` is padding. root="data", transform=RandomCrop(size=300, padding=100) # transform=RandomCrop(size=300, padding=[100, 100]) # transform=RandomCrop(size=300, padding=[100, 100, 100, 100]) ) s300p200_data = OxfordIIITPet( root="data", transform=RandomCrop(size=300, padding=200) ) s700_594p100origin_data = OxfordIIITPet( root="data", transform=RandomCrop(size=[700, 594], padding=100) ) s300p100_data = OxfordIIITPet( root="data", transform=RandomCrop(size=300, padding=100) ) s600_594p100_50origin_data = OxfordIIITPet( root="data", transform=RandomCrop(size=[600, 594], padding=[100, 50]) ) s300p100_50_data = OxfordIIITPet( root="data", transform=RandomCrop(size=300, padding=[100, 50]) ) s650_494p25_50_75_100origin_data = OxfordIIITPet( root="data", transform=RandomCrop(size=[650, 494], padding=[25, 50, 75, 100]) ) s300p25_50_75_100_data = OxfordIIITPet( root="data", transform=RandomCrop(size=300, padding=[25, 50, 75, 100]) ) s300_194pn100origin_data = OxfordIIITPet( # `n` is negative. root="data", transform=RandomCrop(size=[300, 194], padding=-100) ) s150pn100_data = OxfordIIITPet( root="data", transform=RandomCrop(size=150, padding=-100) ) s300_294pn50n100origin_data = OxfordIIITPet( root="data", transform=RandomCrop(size=[300, 294], padding=[-50, -100]) ) s150pn50n100_data = OxfordIIITPet( root="data", transform=RandomCrop(size=150, padding=[-50, -100]) ) s350_294pn25n50n75n100origin_data = OxfordIIITPet( root="data", transform=RandomCrop(size=[350, 294], padding=[-25, -50, -75, -100]) ) s150pn25n50n75n100_data = OxfordIIITPet( root="data", transform=RandomCrop(size=150, padding=[-25, -50, -75, -100]) ) s600_444p25_50origin_data = OxfordIIITPet( root="data", transform=RandomCrop(size=[600, 444], padding=[25, 50]) ) s200p25_50_data = OxfordIIITPet( root="data", transform=RandomCrop(size=200, padding=[25, 50]) ) s400_344pn25n50origin_data = OxfordIIITPet( root="data", transform=RandomCrop(size=[400, 344], padding=[-25, -50]) ) s200pn25n50_data = OxfordIIITPet( root="data", transform=RandomCrop(size=200, padding=[-25, -50]) ) s400_444p25n50origin_data = OxfordIIITPet( root="data", transform=RandomCrop(size=[400, 444], padding=[25, -50]) ) s200p25n50_data = OxfordIIITPet( root="data", transform=RandomCrop(size=200, padding=[25, -50]) ) s600_344pn25_50origin_data = OxfordIIITPet( root="data", transform=RandomCrop(size=[600, 344], padding=[-25, 50]) ) s200pn25_50_data = OxfordIIITPet( root="data", transform=RandomCrop(size=200, padding=[-25, 50]) ) s700_594p100fgrayorigin_data = OxfordIIITPet( # `f` is fill. root="data", transform=RandomCrop(size=[700, 594], padding=100, fill=150) # transform=RandomCrop(size=[700, 594], padding=100, fill=[150]) ) s300p100fgray_data = OxfordIIITPet( root="data", transform=RandomCrop(size=300, padding=100, fill=150) ) s700_594p100fpurpleorigin_data = OxfordIIITPet( root="data", transform=RandomCrop(size=[700, 594], padding=100, fill=[160, 32, 240]) ) s300p100fpurple_data = OxfordIIITPet( root="data", transform=RandomCrop(size=300, padding=100, fill=[160, 32, 240]) ) s700_594p100pmconstorigin_data = OxfordIIITPet( # `pm` is padding_mode. root="data", # `const` is constant. transform=RandomCrop(size=[700, 594], padding=100, padding_mode='constant') ) s300p100pmconst_data = OxfordIIITPet( root="data", transform=RandomCrop(size=300, padding=100, padding_mode='constant') ) s700_594p100pmedgeorigin_data = OxfordIIITPet( root="data", transform=RandomCrop(size=[700, 594], padding=100, padding_mode='edge') ) s300p100pmedge_data = OxfordIIITPet( root="data", transform=RandomCrop(size=300, padding=100, padding_mode='edge') ) s700_594p100pmrefleorigin_data = OxfordIIITPet( # `refle` is reflect. root="data", transform=RandomCrop(size=[700, 594], padding=100, padding_mode='reflect') ) s300p100pmrefle_data = OxfordIIITPet( root="data", transform=RandomCrop(size=300, padding=100, padding_mode='reflect') ) s700_594p100pmsymmeorigin_data = OxfordIIITPet( # `symme` is symmetric. root="data", transform=RandomCrop(size=[700, 594], padding=100, padding_mode='symmetric') ) s300p100pmsymme_data = OxfordIIITPet( root="data", transform=RandomCrop(size=300, padding=100, padding_mode='symmetric') ) import matplotlib.pyplot as plt def show_images1(data, main_title=None): plt.figure(figsize=(10, 5)) plt.suptitle(t=main_title, y=0.8, fontsize=14) for i in range(1, 6): plt.subplot(1, 5, i) plt.imshow(X=data[0][0]) plt.tight_layout() plt.show() plt.figure(figsize=(7, 9)) plt.title(label="s500_394origin_data", fontsize=14) plt.imshow(X=origin_data[0][0]) show_images1(data=origin_data, main_title="s500_394origin_data") show_images1(data=s300_data, main_title="s300_data") show_images1(data=s200_data, main_title="s200_data") show_images1(data=s100_data, main_title="s100_data") show_images1(data=s50_data, main_title="s50_data") show_images1(data=s10_data, main_title="s10_data") show_images1(data=s1_data, main_title="s1_data") show_images1(data=s200_300_data, main_title="s200_300_data") show_images1(data=s300_200_data, main_title="s300_200_data") print() show_images1(data=s700_594p100origin_data, main_title="s700_594p100origin_data") show_images1(data=s300p100_data, main_title="s300p100_data") print() show_images1(data=s600_594p100_50origin_data, main_title="s600_594p100_50origin_data") show_images1(data=s300p100_50_data, main_title="s300p100_50_data") print() show_images1(data=s650_494p25_50_75_100origin_data, main_title="s650_494p25_50_75_100origin_data") show_images1(data=s300p25_50_75_100_data, main_title="s300p25_50_75_100_data") print() show_images1(data=s300_194pn100origin_data, main_title="s300_194pn100origin_data") show_images1(data=s150pn100_data, main_title="s150pn100_data") print() show_images1(data=s300_294pn50n100origin_data, main_title="s300_294pn50n100origin_data") show_images1(data=s150pn50n100_data, main_title="s150pn50n100_data") print() show_images1(data=s350_294pn25n50n75n100origin_data, main_title="s350_294pn25n50n75n100origin_data") show_images1(data=s150pn25n50n75n100_data, main_title="s150pn25n50n75n100_data") print() show_images1(data=s600_444p25_50origin_data, main_title="s600_444p25_50origin_data") show_images1(data=s200p25_50_data, main_title="s200p25_50_data") print() show_images1(data=s400_344pn25n50origin_data, main_title="s400_344pn25n50origin_data") show_images1(data=s200pn25n50_data, main_title="s200pn25n50_data") print() show_images1(data=s400_444p25n50origin_data, main_title="s400_444p25n50origin_data") show_images1(data=s200p25n50_data, main_title="s200p25n50_data") print() show_images1(data=s600_344pn25_50origin_data, main_title="s600_344pn25_50origin_data") show_images1(data=s200pn25_50_data, main_title="s200pn25_50_data") print() show_images1(data=s700_594p100fgrayorigin_data, main_title="s700_594p100fgrayorigin_data") show_images1(data=s300p100fgray_data, main_title="s300p100fgray_data") print() show_images1(data=s700_594p100fpurpleorigin_data, main_title="s700_594p100fpurpleorigin_data") show_images1(data=s300p100fpurple_data, main_title="s300p100fpurple_data") print() show_images1(data=s700_594p100pmconstorigin_data, main_title="s700_594p100pmconstorigin_data") show_images1(data=s300p100pmconst_data, main_title="s300p100pmconst_data") print() show_images1(data=s700_594p100pmedgeorigin_data, main_title="s700_594p100pmedgeorigin_data") show_images1(data=s300p100pmedge_data, main_title="s300p100pmedge_data") print() show_images1(data=s700_594p100pmrefleorigin_data, main_title="s700_594p100pmrefleorigin_data") show_images1(data=s300p100pmrefle_data, main_title="s300p100pmrefle_data") print() show_images1(data=s700_594p100pmsymmeorigin_data, main_title="s700_594p100pmsymmeorigin_data") show_images1(data=s300p100pmsymme_data, main_title="s300p100pmsymme_data") # ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓ def show_images2(data, main_title=None, s=None, p=None, pin=False, f=0, pm='constant'): plt.figure(figsize=(10, 5)) plt.suptitle(t=main_title, y=0.8, fontsize=14) temp_s = s im = data[0][0] for i in range(1, 6): plt.subplot(1, 5, i) if not temp_s: s = [im.size[1], im.size[0]] rc = RandomCrop(size=s, padding=p, # Here pad_if_needed=pin, fill=f, padding_mode=pm) plt.imshow(X=rc(im)) # Here plt.tight_layout() plt.show() plt.figure(figsize=(7, 9)) plt.title(label="s500_394origin_data", fontsize=14) plt.imshow(X=origin_data[0][0]) show_images2(data=origin_data, main_title="s500_394origin_data") show_images2(data=origin_data, main_title="s300_data", s=300) show_images2(data=origin_data, main_title="s200_data", s=200) show_images2(data=origin_data, main_title="s100_data", s=100) show_images2(data=origin_data, main_title="s50_data", s=50) show_images2(data=origin_data, main_title="s10_data", s=10) show_images2(data=origin_data, main_title="s1_data", s=1) show_images2(data=origin_data, main_title="s200_300_data", s=[200, 300]) show_images2(data=origin_data, main_title="s300_200_data", s=[300, 200]) print() show_images2(data=origin_data, main_title="s700_594p100origin_data", s=[700, 594], p=100) show_images2(data=origin_data, main_title="s300p100_data", s=300, p=100) print() show_images2(data=origin_data, main_title="s600_594p100_50origin_data", s=[600, 594], p=[100, 50]) show_images2(data=origin_data, main_title="s300p100_50_data", s=300, p=[100, 50]) print() show_images2(data=origin_data, main_title="s650_494p25_50_75_100origin_data", s=[650, 494], p=[25, 50, 75, 100]) show_images2(data=origin_data, main_title="s300p25_50_75_100_data", s=300, p=[25, 50, 75, 100]) print() show_images2(data=origin_data, main_title="s300_194pn100origin_data", s=[300, 194], p=-100) show_images2(data=origin_data, main_title="s150pn100_data", s=150, p=-100) print() show_images2(data=origin_data, main_title="s300_294pn50n100origin_data", s=[300, 294], p=[-50, -100]) show_images2(data=origin_data, main_title="s150pn50n100_data", s=150, p=[-50, -100]) print() show_images2(data=origin_data, main_title="s350_294pn25n50n75n100origin_data", s=[350, 294], p=[-25, -50, -75, -100]) show_images2(data=origin_data, main_title="s150pn25n50n75n100_data", s=150, p=[-25, -50, -75, -100]) print() show_images2(data=origin_data, main_title="s600_444p25_50origin_data", s=[600, 444], p=[25, 50]) show_images2(data=origin_data, main_title="s200p25_50_data", s=200, p=[25, 50]) print() show_images2(data=origin_data, main_title="s400_344pn25n50origin_data", s=[400, 344], p=[-25, -50]) show_images2(data=origin_data, main_title="s200pn25n50_data", s=200, p=[-25, -50]) print() show_images2(data=origin_data, main_title="s400_444p25n50origin_data", s=[400, 444], p=[25, -50]) show_images2(data=origin_data, main_title="s200p25n50_data", s=200, p=[25, -50]) print() show_images2(data=origin_data, main_title="s600_344pn25_50origin_data", s=[600, 344], p=[-25, 50]) show_images2(data=origin_data, main_title="s200pn25_50_data", s=200, p=[-25, 50]) print() show_images2(data=origin_data, main_title="s700_594p100fgrayorigin_data", s=[700, 594], p=100, f=150) show_images2(data=origin_data, main_title="s300p100fgray_data", s=300, p=100, f=150) print() show_images2(data=origin_data, main_title="s700_594p100fpurpleorigin_data", s=[700, 594], p=100, f=[160, 32, 240]) show_images2(data=origin_data, main_title="s300p100fpurple_data", s=300, p=100, f=[160, 32, 240]) print() show_images2(data=origin_data, main_title="s700_594p100pmconstorigin_data", s=[700, 594], p=100, pm='constant') show_images2(data=origin_data, main_title="s300p100pmconst_data", s=300, p=100, pm='constant') print() show_images2(data=origin_data, main_title="s700_594p100pmedgeorigin_data", s=[700, 594], p=100, pm='edge') show_images2(data=origin_data, main_title="s300p100pmedge_data", s=300, p=100, pm='edge') print() show_images2(data=origin_data, main_title="s700_594p100pmrefleorigin_data", s=[700, 594], p=100, pm='reflect') show_images2(data=origin_data, main_title="s300p100pmrefle_data", s=300, p=100, pm='reflect') print() show_images2(data=origin_data, main_title="s700_594p100pmsymmeorigin_data", s=[700, 594], p=100, pm='symmetric') show_images2(data=origin_data, main_title="s300p100pmsymme_data", s=300, p=100, pm='symmetric')
The above is the detailed content of RandomCrop in PyTorch (1). For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

Solution to permission issues when viewing Python version in Linux terminal When you try to view Python version in Linux terminal, enter python...

How to avoid being detected when using FiddlerEverywhere for man-in-the-middle readings When you use FiddlerEverywhere...

When using Python's pandas library, how to copy whole columns between two DataFrames with different structures is a common problem. Suppose we have two Dats...

How to teach computer novice programming basics within 10 hours? If you only have 10 hours to teach computer novice some programming knowledge, what would you choose to teach...

How does Uvicorn continuously listen for HTTP requests? Uvicorn is a lightweight web server based on ASGI. One of its core functions is to listen for HTTP requests and proceed...

Fastapi ...

Using python in Linux terminal...

Understanding the anti-crawling strategy of Investing.com Many people often try to crawl news data from Investing.com (https://cn.investing.com/news/latest-news)...
