Home Backend Development Python Tutorial RandomCrop in PyTorch (1)

RandomCrop in PyTorch (1)

Jan 30, 2025 pm 12:12 PM

Buy Me a Coffee☕

*Memos:

  • My post explains OxfordIIITPet().

RandomCrop() can crop an image randomly as shown below:

*Memos:

  • The 1st argument for initialization is size(Required-Type:int or tuple/list(int) or size()): *Memos:
    • It's [height, width].
    • It must be 1 <= x.
    • A tuple/list must be the 1D with 1 or 2 elements.
    • A single value(int or tuple/list(int)) means [size, size].
  • The 2nd argument for initialization is padding(Optional-Default:None-Type:int or tuple/list(int)): *Memos:
    • It's [left, top, right, bottom] which can be converted from [left-right, top-bottom] or [left-top-right-bottom].
    • A tuple/list must be the 1D with 1, 2 or 4 elements.
    • A single value(int or tuple/list(int)) means [padding, padding, padding, padding].
    • Double values(tuple/list(int)) means [padding[0], padding[1], padding[0], padding[1]].
  • The 3rd argument for initialization is pad_if_needed(Optional-Default:False-Type:bool):
    • If it's False and size is smaller than an original image or the padded image by padding, there is error.
    • If it's True and size is smaller than an original image or the padded image by padding, there is no error, then the image is randomly padded to become size.
  • The 4th argument for initialization is fill(Optional-Default:0-Type:int, float or tuple/list(int or float)): *Memos:
    • It can change the background of an image. *The background can be seen when an image is positively padded.
    • A tuple/list must be the 1D with 1 or 3 elements.
  • The 5th argument for initialization is padding_mode(Optional-Default:'constant'-Type:str). *'constant', 'edge', 'reflect' or 'symmetric' can be set to it.
  • The 1st argument is img(Required-Type:PIL Image or tensor(int)): *Memos:
    • A tensor must be 2D or 3D.
    • Don't use img=.
  • v2 is recommended to use according to V1 or V2? Which one should I use?.
from torchvision.datasets import OxfordIIITPet
from torchvision.transforms.v2 import RandomCrop

randomcrop = RandomCrop(size=100)
randomcrop = RandomCrop(size=100,
                        padding=None,
                        pad_if_needed=False, 
                        fill=0,
                        padding_mode='constant')
randomcrop
# RandomCrop(size=(100, 100),
#            pad_if_needed=False,
#            fill=0,
#            padding_mode=constant)

randomcrop.size
# (100, 100)

print(randomcrop.padding)
# None

randomcrop.pad_if_needed
# False

randomcrop.fill
# 0

randomcrop.padding_mode
# 'constant'

origin_data = OxfordIIITPet(
    root="data",
    transform=None
)

s300_data = OxfordIIITPet( # `s` is size.
    root="data",
    transform=RandomCrop(size=300)
    # transform=RandomCrop(size=[300, 300])
)

s200_data = OxfordIIITPet(
    root="data",
    transform=RandomCrop(size=200)
)

s100_data = OxfordIIITPet(
    root="data",
    transform=RandomCrop(size=100)
)

s50_data = OxfordIIITPet(
    root="data",
    transform=RandomCrop(size=50)
)

s10_data = OxfordIIITPet(
    root="data",
    transform=RandomCrop(size=10)
)

s1_data = OxfordIIITPet(
    root="data",
    transform=RandomCrop(size=1)
)

s200_300_data = OxfordIIITPet(
    root="data",
    transform=RandomCrop(size=[200, 300])
)

s300_200_data = OxfordIIITPet(
    root="data",
    transform=RandomCrop(size=[300, 200])
)

s300p100_data = OxfordIIITPet( # `p` is padding.
    root="data",
    transform=RandomCrop(size=300, padding=100)
    # transform=RandomCrop(size=300, padding=[100, 100])
    # transform=RandomCrop(size=300, padding=[100, 100, 100, 100])
)

s300p200_data = OxfordIIITPet(
    root="data",
    transform=RandomCrop(size=300, padding=200)
)

s700_594p100origin_data = OxfordIIITPet(
    root="data",
    transform=RandomCrop(size=[700, 594], padding=100)
)

s300p100_data = OxfordIIITPet(
    root="data",
    transform=RandomCrop(size=300, padding=100)
)

s600_594p100_50origin_data = OxfordIIITPet(
    root="data",
    transform=RandomCrop(size=[600, 594], padding=[100, 50])
)

s300p100_50_data = OxfordIIITPet(
    root="data",
    transform=RandomCrop(size=300, padding=[100, 50])
)

s650_494p25_50_75_100origin_data = OxfordIIITPet(
    root="data",
    transform=RandomCrop(size=[650, 494], padding=[25, 50, 75, 100])
)

s300p25_50_75_100_data = OxfordIIITPet(
    root="data",
    transform=RandomCrop(size=300, padding=[25, 50, 75, 100])
)

s300_194pn100origin_data = OxfordIIITPet( # `n` is negative.
    root="data",
    transform=RandomCrop(size=[300, 194], padding=-100)
)

s150pn100_data = OxfordIIITPet(
    root="data",
    transform=RandomCrop(size=150, padding=-100)
)

s300_294pn50n100origin_data = OxfordIIITPet(
    root="data",
    transform=RandomCrop(size=[300, 294], padding=[-50, -100])
)

s150pn50n100_data = OxfordIIITPet(
    root="data",
    transform=RandomCrop(size=150, padding=[-50, -100])
)

s350_294pn25n50n75n100origin_data = OxfordIIITPet(
    root="data",
    transform=RandomCrop(size=[350, 294], padding=[-25, -50, -75, -100])
)

s150pn25n50n75n100_data = OxfordIIITPet(
    root="data",
    transform=RandomCrop(size=150, padding=[-25, -50, -75, -100])
)

s600_444p25_50origin_data = OxfordIIITPet(
    root="data",
    transform=RandomCrop(size=[600, 444], padding=[25, 50])
)

s200p25_50_data = OxfordIIITPet(
    root="data",
    transform=RandomCrop(size=200, padding=[25, 50])
)

s400_344pn25n50origin_data = OxfordIIITPet(
    root="data",
    transform=RandomCrop(size=[400, 344], padding=[-25, -50])
)

s200pn25n50_data = OxfordIIITPet(
    root="data",
    transform=RandomCrop(size=200, padding=[-25, -50])
)

s400_444p25n50origin_data = OxfordIIITPet(
    root="data",
    transform=RandomCrop(size=[400, 444], padding=[25, -50])
)

s200p25n50_data = OxfordIIITPet(
    root="data",
    transform=RandomCrop(size=200, padding=[25, -50])
)

s600_344pn25_50origin_data = OxfordIIITPet(
    root="data",
    transform=RandomCrop(size=[600, 344], padding=[-25, 50])
)

s200pn25_50_data = OxfordIIITPet(
    root="data",
    transform=RandomCrop(size=200, padding=[-25, 50])
)

s700_594p100fgrayorigin_data = OxfordIIITPet( # `f` is fill.
    root="data",
    transform=RandomCrop(size=[700, 594], padding=100, fill=150)
    # transform=RandomCrop(size=[700, 594], padding=100, fill=[150])
)

s300p100fgray_data = OxfordIIITPet(
    root="data",
    transform=RandomCrop(size=300, padding=100, fill=150)
)

s700_594p100fpurpleorigin_data = OxfordIIITPet(
    root="data",
    transform=RandomCrop(size=[700, 594], padding=100, fill=[160, 32, 240])
)

s300p100fpurple_data = OxfordIIITPet(
    root="data",
    transform=RandomCrop(size=300, padding=100, fill=[160, 32, 240])
)

s700_594p100pmconstorigin_data = OxfordIIITPet( # `pm` is padding_mode.
    root="data",                                # `const` is constant.
    transform=RandomCrop(size=[700, 594], padding=100, padding_mode='constant')
)

s300p100pmconst_data = OxfordIIITPet(
    root="data",
    transform=RandomCrop(size=300, padding=100, padding_mode='constant')
)

s700_594p100pmedgeorigin_data = OxfordIIITPet(
    root="data",
    transform=RandomCrop(size=[700, 594], padding=100, padding_mode='edge')
)

s300p100pmedge_data = OxfordIIITPet(
    root="data",
    transform=RandomCrop(size=300, padding=100, padding_mode='edge')
)

s700_594p100pmrefleorigin_data = OxfordIIITPet( # `refle` is reflect.
    root="data",
    transform=RandomCrop(size=[700, 594], padding=100, padding_mode='reflect')
)

s300p100pmrefle_data = OxfordIIITPet(
    root="data",
    transform=RandomCrop(size=300, padding=100, padding_mode='reflect')
)

s700_594p100pmsymmeorigin_data = OxfordIIITPet( # `symme` is symmetric.
    root="data",
    transform=RandomCrop(size=[700, 594], padding=100, 
                         padding_mode='symmetric')
)

s300p100pmsymme_data = OxfordIIITPet(
    root="data",
    transform=RandomCrop(size=300, padding=100, padding_mode='symmetric')
)

import matplotlib.pyplot as plt

def show_images1(data, main_title=None):
    plt.figure(figsize=(10, 5))
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    for i in range(1, 6):
        plt.subplot(1, 5, i)
        plt.imshow(X=data[0][0])
    plt.tight_layout()
    plt.show()

plt.figure(figsize=(7, 9))
plt.title(label="s500_394origin_data", fontsize=14)
plt.imshow(X=origin_data[0][0])
show_images1(data=origin_data, main_title="s500_394origin_data")
show_images1(data=s300_data, main_title="s300_data")
show_images1(data=s200_data, main_title="s200_data")
show_images1(data=s100_data, main_title="s100_data")
show_images1(data=s50_data, main_title="s50_data")
show_images1(data=s10_data, main_title="s10_data")
show_images1(data=s1_data, main_title="s1_data")
show_images1(data=s200_300_data, main_title="s200_300_data")
show_images1(data=s300_200_data, main_title="s300_200_data")
print()
show_images1(data=s700_594p100origin_data,
             main_title="s700_594p100origin_data")
show_images1(data=s300p100_data, main_title="s300p100_data")
print()
show_images1(data=s600_594p100_50origin_data,
             main_title="s600_594p100_50origin_data")
show_images1(data=s300p100_50_data, main_title="s300p100_50_data")
print()
show_images1(data=s650_494p25_50_75_100origin_data,
             main_title="s650_494p25_50_75_100origin_data")
show_images1(data=s300p25_50_75_100_data, 
             main_title="s300p25_50_75_100_data")
print()
show_images1(data=s300_194pn100origin_data,
             main_title="s300_194pn100origin_data")
show_images1(data=s150pn100_data, 
             main_title="s150pn100_data")
print()
show_images1(data=s300_294pn50n100origin_data,
             main_title="s300_294pn50n100origin_data")
show_images1(data=s150pn50n100_data, 
             main_title="s150pn50n100_data")
print()
show_images1(data=s350_294pn25n50n75n100origin_data,
             main_title="s350_294pn25n50n75n100origin_data")
show_images1(data=s150pn25n50n75n100_data, 
             main_title="s150pn25n50n75n100_data")
print()
show_images1(data=s600_444p25_50origin_data,
             main_title="s600_444p25_50origin_data")
show_images1(data=s200p25_50_data, 
             main_title="s200p25_50_data")
print()
show_images1(data=s400_344pn25n50origin_data,
             main_title="s400_344pn25n50origin_data")
show_images1(data=s200pn25n50_data, 
             main_title="s200pn25n50_data")
print()
show_images1(data=s400_444p25n50origin_data,
             main_title="s400_444p25n50origin_data")
show_images1(data=s200p25n50_data, 
             main_title="s200p25n50_data")
print()
show_images1(data=s600_344pn25_50origin_data,
             main_title="s600_344pn25_50origin_data")
show_images1(data=s200pn25_50_data, 
             main_title="s200pn25_50_data")
print()
show_images1(data=s700_594p100fgrayorigin_data,
             main_title="s700_594p100fgrayorigin_data")
show_images1(data=s300p100fgray_data, main_title="s300p100fgray_data")
print()
show_images1(data=s700_594p100fpurpleorigin_data,
             main_title="s700_594p100fpurpleorigin_data")
show_images1(data=s300p100fpurple_data, main_title="s300p100fpurple_data")
print()
show_images1(data=s700_594p100pmconstorigin_data,
             main_title="s700_594p100pmconstorigin_data")
show_images1(data=s300p100pmconst_data, main_title="s300p100pmconst_data")
print()
show_images1(data=s700_594p100pmedgeorigin_data,
             main_title="s700_594p100pmedgeorigin_data")
show_images1(data=s300p100pmedge_data, main_title="s300p100pmedge_data")
print()
show_images1(data=s700_594p100pmrefleorigin_data,
             main_title="s700_594p100pmrefleorigin_data")
show_images1(data=s300p100pmrefle_data, main_title="s300p100pmrefle_data")
print()
show_images1(data=s700_594p100pmsymmeorigin_data,
             main_title="s700_594p100pmsymmeorigin_data")
show_images1(data=s300p100pmsymme_data, main_title="s300p100pmsymme_data")

# ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓
def show_images2(data, main_title=None, s=None, p=None,
                 pin=False, f=0, pm='constant'):
    plt.figure(figsize=(10, 5))
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    temp_s = s
    im = data[0][0]
    for i in range(1, 6):
        plt.subplot(1, 5, i)
        if not temp_s:
            s = [im.size[1], im.size[0]]
        rc = RandomCrop(size=s, padding=p, # Here
                        pad_if_needed=pin, fill=f, padding_mode=pm)
        plt.imshow(X=rc(im)) # Here
    plt.tight_layout()
    plt.show()

plt.figure(figsize=(7, 9))
plt.title(label="s500_394origin_data", fontsize=14)
plt.imshow(X=origin_data[0][0])
show_images2(data=origin_data, main_title="s500_394origin_data")
show_images2(data=origin_data, main_title="s300_data", s=300)
show_images2(data=origin_data, main_title="s200_data", s=200)
show_images2(data=origin_data, main_title="s100_data", s=100)
show_images2(data=origin_data, main_title="s50_data", s=50)
show_images2(data=origin_data, main_title="s10_data", s=10)
show_images2(data=origin_data, main_title="s1_data", s=1)
show_images2(data=origin_data, main_title="s200_300_data", s=[200, 300])
show_images2(data=origin_data, main_title="s300_200_data", s=[300, 200])
print()
show_images2(data=origin_data, main_title="s700_594p100origin_data",
             s=[700, 594], p=100)
show_images2(data=origin_data, main_title="s300p100_data", s=300, p=100)
print()
show_images2(data=origin_data, main_title="s600_594p100_50origin_data",
             s=[600, 594], p=[100, 50])
show_images2(data=origin_data, main_title="s300p100_50_data", s=300,
             p=[100, 50])
print()
show_images2(data=origin_data, main_title="s650_494p25_50_75_100origin_data",
             s=[650, 494], p=[25, 50, 75, 100])
show_images2(data=origin_data, main_title="s300p25_50_75_100_data", s=300, 
             p=[25, 50, 75, 100])
print()
show_images2(data=origin_data, main_title="s300_194pn100origin_data",
             s=[300, 194], p=-100)
show_images2(data=origin_data, main_title="s150pn100_data", s=150, p=-100)
print()
show_images2(data=origin_data, main_title="s300_294pn50n100origin_data",
             s=[300, 294], p=[-50, -100])
show_images2(data=origin_data, main_title="s150pn50n100_data", s=150,
             p=[-50, -100])
print()
show_images2(data=origin_data, main_title="s350_294pn25n50n75n100origin_data",
             s=[350, 294], p=[-25, -50, -75, -100])
show_images2(data=origin_data, main_title="s150pn25n50n75n100_data", s=150,
             p=[-25, -50, -75, -100])
print()
show_images2(data=origin_data, main_title="s600_444p25_50origin_data",
             s=[600, 444], p=[25, 50])
show_images2(data=origin_data, main_title="s200p25_50_data", s=200,
             p=[25, 50])
print()
show_images2(data=origin_data, main_title="s400_344pn25n50origin_data",
             s=[400, 344], p=[-25, -50])
show_images2(data=origin_data, main_title="s200pn25n50_data", s=200,
             p=[-25, -50])
print()
show_images2(data=origin_data, main_title="s400_444p25n50origin_data",
             s=[400, 444], p=[25, -50])
show_images2(data=origin_data, main_title="s200p25n50_data", s=200,
             p=[25, -50])
print()
show_images2(data=origin_data, main_title="s600_344pn25_50origin_data",
             s=[600, 344], p=[-25, 50])
show_images2(data=origin_data, main_title="s200pn25_50_data", s=200,
             p=[-25, 50])
print()
show_images2(data=origin_data, main_title="s700_594p100fgrayorigin_data", 
             s=[700, 594], p=100, f=150)
show_images2(data=origin_data, main_title="s300p100fgray_data", s=300,
             p=100, f=150)
print()
show_images2(data=origin_data, main_title="s700_594p100fpurpleorigin_data",
             s=[700, 594], p=100, f=[160, 32, 240])
show_images2(data=origin_data, main_title="s300p100fpurple_data", s=300,
             p=100, f=[160, 32, 240])
print()
show_images2(data=origin_data, main_title="s700_594p100pmconstorigin_data",
             s=[700, 594], p=100, pm='constant')
show_images2(data=origin_data, main_title="s300p100pmconst_data", s=300, 
             p=100, pm='constant')
print()
show_images2(data=origin_data, main_title="s700_594p100pmedgeorigin_data",
             s=[700, 594], p=100, pm='edge')
show_images2(data=origin_data, main_title="s300p100pmedge_data", s=300, 
             p=100, pm='edge')
print()
show_images2(data=origin_data, main_title="s700_594p100pmrefleorigin_data",
             s=[700, 594], p=100, pm='reflect')
show_images2(data=origin_data, main_title="s300p100pmrefle_data", s=300, 
             p=100, pm='reflect')
print()
show_images2(data=origin_data, main_title="s700_594p100pmsymmeorigin_data",
             s=[700, 594], p=100, pm='symmetric')
show_images2(data=origin_data, main_title="s300p100pmsymme_data", s=300, 
             p=100, pm='symmetric')
Copy after login

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description


Image description

Image description


Image description

Image description


Image description

Image description


Image description

Image description


Image description

Image description


Image description

Image description


Image description

Image description


Image description

Image description


Image description

Image description


Image description

Image description


Image description

Image description


Image description

Image description


Image description

Image description


Image description

Image description


Image description

Image description


Image description

Image description

The above is the detailed content of RandomCrop in PyTorch (1). For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

How to solve the permissions problem encountered when viewing Python version in Linux terminal? How to solve the permissions problem encountered when viewing Python version in Linux terminal? Apr 01, 2025 pm 05:09 PM

Solution to permission issues when viewing Python version in Linux terminal When you try to view Python version in Linux terminal, enter python...

How to avoid being detected by the browser when using Fiddler Everywhere for man-in-the-middle reading? How to avoid being detected by the browser when using Fiddler Everywhere for man-in-the-middle reading? Apr 02, 2025 am 07:15 AM

How to avoid being detected when using FiddlerEverywhere for man-in-the-middle readings When you use FiddlerEverywhere...

How to efficiently copy the entire column of one DataFrame into another DataFrame with different structures in Python? How to efficiently copy the entire column of one DataFrame into another DataFrame with different structures in Python? Apr 01, 2025 pm 11:15 PM

When using Python's pandas library, how to copy whole columns between two DataFrames with different structures is a common problem. Suppose we have two Dats...

How to teach computer novice programming basics in project and problem-driven methods within 10 hours? How to teach computer novice programming basics in project and problem-driven methods within 10 hours? Apr 02, 2025 am 07:18 AM

How to teach computer novice programming basics within 10 hours? If you only have 10 hours to teach computer novice some programming knowledge, what would you choose to teach...

How does Uvicorn continuously listen for HTTP requests without serving_forever()? How does Uvicorn continuously listen for HTTP requests without serving_forever()? Apr 01, 2025 pm 10:51 PM

How does Uvicorn continuously listen for HTTP requests? Uvicorn is a lightweight web server based on ASGI. One of its core functions is to listen for HTTP requests and proceed...

How to solve permission issues when using python --version command in Linux terminal? How to solve permission issues when using python --version command in Linux terminal? Apr 02, 2025 am 06:36 AM

Using python in Linux terminal...

How to get news data bypassing Investing.com's anti-crawler mechanism? How to get news data bypassing Investing.com's anti-crawler mechanism? Apr 02, 2025 am 07:03 AM

Understanding the anti-crawling strategy of Investing.com Many people often try to crawl news data from Investing.com (https://cn.investing.com/news/latest-news)...

See all articles