This tutorial will explain how to use Java to find the top and bottom elements of a given stack.
TheStack represents a linear dataset that follows the Last in First Out (LIFO) principle, so elements are added and removed at the same location. We will further explore two ways to find the top and bottom elements of a given stack, i.e. iterate over and recursively .
Problem Statementiterative methods and the recursive methods in our custom stack to ensure that the original stack remains unchanged.
Enter 1
<code>stack = [5, 10, 15, 20, 25, 30]</code>
Output 1
<code>堆栈中的顶部元素是 --> 30 堆栈中的底部元素是 --> 5</code>
Enter 2
<code>stack = [1000, 2000, 3000, 4000, 5000]</code>
Output 2
<code>堆栈元素:5000 4000 3000 2000 1000 底部元素:1000 顶部元素:5000</code>
Output
<code class="language-java">class MyStack { private int maxSize; private int[] stackArray; private int top; // 使用MyStack构造函数初始化堆栈 public MyStack(int size) { this.maxSize = size; this.stackArray = new int[maxSize]; // 将Top变量初始化为-1,表示空堆栈 this.top = -1; } // 将元素添加到stackArray中 public void push(int value) { if (top < maxSize -1) { stackArray[++top] = value; } else { System.out.println("堆栈已满"); } } // 使用peek()查找顶部元素 public int peek() { if (top >= 0) { return stackArray[top]; } else { System.out.println("堆栈为空。"); return -1; } } // 使用bottom()查找堆栈数组中的底部元素(第一个添加的值) public int bottom() { if (top >= 0) { return stackArray[0]; } else { System.out.println("堆栈为空。"); return -1; } } } public class Main { public static void main(String[] args) { MyStack stack = new MyStack(6); // 创建大小为6的堆栈 // 将元素压入堆栈 stack.push(5); stack.push(10); stack.push(15); stack.push(20); stack.push(25); stack.push(30); // 检索顶部和底部元素 int topElement = stack.peek(); int bottomElement = stack.bottom(); // 打印最终输出 System.out.println("堆栈中的顶部元素是 --> " + topElement); System.out.println("堆栈中的底部元素是 --> " + bottomElement); } }</code>
<code>堆栈中的顶部元素是 --> 30 堆栈中的底部元素是 --> 5</code>
Space complexity:
O(n), because we fix maxSize to store n elements, proportional to the size of the stack.Recursive method to find top and bottom elements
In this approach, we will use recursion to find the top and bottom elements in the stack. The stack is initialized and formed using the push() operation and recursively extracts the required elements. Here are the steps to find the top and bottom elements of a given stack:The following is a Java program that uses a recursive method to find the top and bottom elements of a given stack:
<code>stack = [5, 10, 15, 20, 25, 30]</code>
<code>堆栈中的顶部元素是 --> 30 堆栈中的底部元素是 --> 5</code>
Time Complexity: Total is O(n), because an element spends O(1) in the push() operation during stack formation of size n. In the worst case, recursive operations cost O(n).
Spatial complexity: Due to the recursive call stack, recursively is O(n). The array itself also uses O(n) to store n elements.
In short, both methods are applicable to their respective cases, where the direct array method provides constant time access to stack elements and its simple interactive implementation. On the other hand, recursive methods provide a recursive perspective on stack operations, making them more general and emphasizing algorithmic methods. Understanding these two methods gives you the basics of the stack and when to use either method.
The above is the detailed content of Java program to find the top and bottom elements of a given stack. For more information, please follow other related articles on the PHP Chinese website!