Google's Gemini AI: A Comprehensive Guide to the API
Google's Gemini AI models, particularly Gemini Pro, are poised to make significant strides in the AI landscape, offering a powerful alternative to competitors like ChatGPT. This tutorial explores the Gemini API, enabling developers to integrate cutting-edge AI capabilities into their applications. We'll cover text and image input, model selection, and advanced features.
Gemini AI, a multimodal AI model developed by Google Research and Google DeepMind, processes various data types, including text, code, audio, images, and video. Built with a human-centric approach, it aims to benefit humanity. Its scalability allows deployment across diverse systems, from data centers to mobile devices. Three key versions cater to specific needs:
Image source
Gemini Ultra notably outperforms GPT-4 on several benchmarks, showcasing its superior understanding and problem-solving abilities. For AI newcomers, Google's AI Fundamentals skill track provides a helpful introduction to key concepts.
Before using the API, obtain an API key from Google AI for Developers:
%pip install google-generativeai
import google.generativeai as genai from kaggle_secrets import UserSecretsClient # If using Kaggle user_secrets = UserSecretsClient() gemini_key = user_secrets.get_secret("GEMINI_API_KEY") # If using Kaggle genai.configure(api_key=gemini_key)
Let's generate text using the gemini-pro
model:
model = genai.GenerativeModel('gemini-pro') response = model.generate_content("List the most influential people in the world.") print(response.text)
The free API provides a single response. To access multiple candidates, a paid plan is required. Note that the output is often in Markdown format; use IPython.display.Markdown
for proper rendering. Generating Python code is equally straightforward:
response = model.generate_content("Build a simple Python web application.") Markdown(response.text)
Improve perceived speed by using streaming:
from IPython.display import display model = genai.GenerativeModel("gemini-pro") response = model.generate_content("How can I make authentic Italian pasta?", stream=True) for chunk in response: display(Markdown(chunk.text)) display(Markdown("_" * 80))
Customize responses using GenerationConfig
:
response = model.generate_content( 'How to be productive during a burnout stage.', generation_config=genai.types.GenerationConfig( candidate_count=1, stop_sequences=['time'], max_output_tokens=1000, temperature=0.7) ) Markdown(response.text)
Gemini Pro Vision handles image inputs. After downloading an image (e.g., using curl
), load and display it using Pillow:
!curl -o landscape.jpg "https://images.pexels.com/photos/18776367/...etc" import PIL.Image img = PIL.Image.open('landscape.jpg') display(img)
Then, use the image with the model:
import google.generativeai as genai from kaggle_secrets import UserSecretsClient # If using Kaggle user_secrets = UserSecretsClient() gemini_key = user_secrets.get_secret("GEMINI_API_KEY") # If using Kaggle genai.configure(api_key=gemini_key)
Maintain conversation context using start_chat
:
model = genai.GenerativeModel('gemini-pro') response = model.generate_content("List the most influential people in the world.") print(response.text)
Generate embeddings for semantic analysis:
response = model.generate_content("Build a simple Python web application.") Markdown(response.text)
Explore advanced features like safety settings, low-level API access, and extended multi-turn conversations for enhanced application development. The Gemini API empowers developers to create sophisticated AI applications, leveraging its multimodal capabilities and seamless Python integration. Further learning resources, including courses and cheat sheets, are available for deeper exploration.
The above is the detailed content of Introducing Google Gemini API: Discover the Power of the New Gemini AI Models. For more information, please follow other related articles on the PHP Chinese website!