Table of Contents
Table of contents
What’s New in YOLO v12?
Key Improvements Over Previous Versions
1. Attention-Centric Framework
2. Superior Performance Metrics
3. Outperforming Non-YOLO Models
Computational Efficiency Enhancements
1. Flash Attention for Memory Efficiency
2. Area Attention for Lower Computation Cost
3. R-ELAN for Optimized Feature Processing
YOLO v12 Model Variants
Let’s compare YOLO v11 and YOLO v12 Models
1. Object Counting
YOLO v12
Output
2. Heatmaps
3. Speed Estimation
Expert Opinions on YOLOv11 and YOLOv12
Conclusion
Home Technology peripherals AI How to Use YOLO v12 for Object Detection?

How to Use YOLO v12 for Object Detection?

Mar 22, 2025 am 11:07 AM

YOLO (You Only Look Once) has been a leading real-time object detection framework, with each iteration improving upon the previous versions. The latest version YOLO v12 introduces advancements that significantly enhance accuracy while maintaining real-time processing speeds. This article explores the key innovations in YOLO v12, highlighting how it surpasses the previous versions while minimizing computational costs without compromising detection efficiency.

Table of contents

  • What’s New in YOLO v12?
  • Key Improvements Over Previous Versions
  • Computational Efficiency Enhancements
  • YOLO v12 Model Variants
  • Let’s compare YOLO v11 and YOLO v12 Models
  • Expert Opinions on YOLOv11 and YOLOv12
  • Conclusion

What’s New in YOLO v12?

Previously, YOLO models relied on Convolutional Neural Networks (CNNs) for object detection due to their speed and efficiency. However, YOLO v12 makes use of attention mechanisms, a concept widely known and used in Transformer models which allow it to recognize patterns more effectively. While attention mechanisms have originally been slow for real-time object detection, YOLO v12 somehow successfully integrates them while maintaining YOLO’s speed, leading to an Attention-Centric YOLO framework.

Key Improvements Over Previous Versions

1. Attention-Centric Framework

YOLO v12 combines the power of attention mechanisms with CNNs, resulting in a model that is both faster and more accurate. Unlike its predecessors which relied solely on CNNs, YOLO v12 introduces optimized attention modules to improve object recognition without adding unnecessary latency.

2. Superior Performance Metrics

Comparing performance metrics across different YOLO versions and real-time detection models reveals that YOLO v12 achieves higher accuracy while maintaining low latency.

  • The mAP (Mean Average Precision) values on datasets like COCO show YOLO v12 outperforming YOLO v11 and YOLO v10 while maintaining comparable speed.
  • The model achieves a remarkable 40.6% accuracy (mAP) while processing images in just 1.64 milliseconds on an Nvidia T4 GPU. This performance is superior to YOLO v10 and YOLO v11 without sacrificing speed.

How to Use YOLO v12 for Object Detection?

3. Outperforming Non-YOLO Models

YOLO v12 surpasses previous YOLO versions; it also outperforms other real-time object detection frameworks, such as RT-Det and RT-Det v2. These alternative models have higher latency yet fail to match YOLO v12’s accuracy.

Computational Efficiency Enhancements

One of the major concerns with integrating attention mechanisms into YOLO models was their high computational cost (Attention Mechanism) and memory inefficiency. YOLO v12 addresses these issues through several key innovations:

1. Flash Attention for Memory Efficiency

Traditional attention mechanisms consume a large amount of memory, making them impractical for real-time applications. YOLO v12 introduces Flash Attention, a technique that reduces memory consumption and speeds up inference time.

2. Area Attention for Lower Computation Cost

To further optimize efficiency, YOLO v12 employs Area Attention, which focuses only on relevant regions of an image instead of processing the entire feature map. This technique dramatically reduces computation costs while retaining accuracy.

How to Use YOLO v12 for Object Detection?

3. R-ELAN for Optimized Feature Processing

YOLO v12 also introduces R-ELAN (Re-Engineered ELAN), which optimizes feature propagation making the model more efficient in handling complex object detection tasks without increasing computational demands.

How to Use YOLO v12 for Object Detection?

YOLO v12 Model Variants

YOLO v12 comes in five different variants, catering to different applications:

  • N (Nano) & S (Small): Designed for real-time applications where speed is crucial.
  • M (Medium): Balances accuracy and speed, suitable for general-purpose tasks.
  • L (Large) & XL (Extra Large): Optimized for high-precision tasks where accuracy is prioritized over speed.

Also read:

  • A Step-by-Step Introduction to the Basic Object Detection Algorithms (Part 1)
  • A Practical Implementation of the Faster R-CNN Algorithm for Object Detection (Part 2)
  • A Practical Guide to Object Detection using the Popular YOLO Framework – Part III (with Python codes)

Let’s compare YOLO v11 and YOLO v12 Models

We’ll be experimenting with YOLO v11 and YOLO v12 small models to understand their performance across various tasks like object counting, heatmaps, and speed estimation.

1. Object Counting

YOLO v11

import cv2
from ultralytics import solutions

cap = cv2.VideoCapture("highway.mp4")
assert cap.isOpened(), "Error reading video file"
w, h, fps = (int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)), int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)), int(cap.get(cv2.CAP_PROP_FPS)))

# Define region points
region_points = [(20, 1500), (1080, 1500), (1080, 1460), (20, 1460)]  # Lower rectangle region counting

# Video writer (MP4 format)
video_writer = cv2.VideoWriter("object_counting_output.mp4", cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))

# Init ObjectCounter
counter = solutions.ObjectCounter(
    show=False,  # Disable internal window display
    region=region_points,
    model="yolo11s.pt",
)

# Process video
while cap.isOpened():
    success, im0 = cap.read()
    if not success:
        print("Video frame is empty or video processing has been successfully completed.")
        break
    
    im0 = counter.count(im0)

    # Resize to fit screen (optional — scale down for large videos)
    im0_resized = cv2.resize(im0, (640, 360))  # Adjust resolution as needed
    
    # Show the resized frame
    cv2.imshow("Object Counting", im0_resized)
    video_writer.write(im0)

    # Press 'q' to exit
    if cv2.waitKey(1) & 0xFF == ord('q'):
        break

cap.release()
video_writer.release()
cv2.destroyAllWindows()
Copy after login

Output

YOLO v12

import cv2
from ultralytics import solutions

cap = cv2.VideoCapture("highway.mp4")
assert cap.isOpened(), "Error reading video file"
w, h, fps = (int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)), int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)), int(cap.get(cv2.CAP_PROP_FPS)))

# Define region points
region_points = [(20, 1500), (1080, 1500), (1080, 1460), (20, 1460)]  # Lower rectangle region counting

# Video writer (MP4 format)
video_writer = cv2.VideoWriter("object_counting_output.mp4", cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))

# Init ObjectCounter
counter = solutions.ObjectCounter(
    show=False,  # Disable internal window display
    region=region_points,
    model="yolo12s.pt",
)

# Process video
while cap.isOpened():
    success, im0 = cap.read()
    if not success:
        print("Video frame is empty or video processing has been successfully completed.")
        break
    
    im0 = counter.count(im0)

    # Resize to fit screen (optional — scale down for large videos)
    im0_resized = cv2.resize(im0, (640, 360))  # Adjust resolution as needed
    
    # Show the resized frame
    cv2.imshow("Object Counting", im0_resized)
    video_writer.write(im0)

    # Press 'q' to exit
    if cv2.waitKey(1) & 0xFF == ord('q'):
        break

cap.release()
video_writer.release()
cv2.destroyAllWindows()
Copy after login

Output

2. Heatmaps

YOLO v11

import cv2

from ultralytics import solutions

cap = cv2.VideoCapture("mall_arial.mp4")
assert cap.isOpened(), "Error reading video file"
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))

# Video writer
video_writer = cv2.VideoWriter("heatmap_output_yolov11.mp4", cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))

# In case you want to apply object counting + heatmaps, you can pass region points.
# region_points = [(20, 400), (1080, 400)]  # Define line points
# region_points = [(20, 400), (1080, 400), (1080, 360), (20, 360)]  # Define region points
# region_points = [(20, 400), (1080, 400), (1080, 360), (20, 360), (20, 400)]  # Define polygon points

# Init heatmap
heatmap = solutions.Heatmap(
    show=True,  # Display the output
    model="yolo11s.pt",  # Path to the YOLO11 model file
    colormap=cv2.COLORMAP_PARULA,  # Colormap of heatmap
    # region=region_points,  # If you want to do object counting with heatmaps, you can pass region_points
    # classes=[0, 2],  # If you want to generate heatmap for specific classes i.e person and car.
    # show_in=True,  # Display in counts
    # show_out=True,  # Display out counts
    # line_width=2,  # Adjust the line width for bounding boxes and text display
)

# Process video
while cap.isOpened():
    success, im0 = cap.read()
    if not success:
        print("Video frame is empty or video processing has been successfully completed.")
        break
    im0 = heatmap.generate_heatmap(im0)
    im0_resized = cv2.resize(im0, (w, h))
    video_writer.write(im0_resized)

cap.release()
video_writer.release()
cv2.destroyAllWindows()
Copy after login

Output

YOLO v12

import cv2

from ultralytics import solutions

cap = cv2.VideoCapture("mall_arial.mp4")
assert cap.isOpened(), "Error reading video file"
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))

# Video writer
video_writer = cv2.VideoWriter("heatmap_output_yolov12.mp4", cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))

# In case you want to apply object counting + heatmaps, you can pass region points.
# region_points = [(20, 400), (1080, 400)]  # Define line points
# region_points = [(20, 400), (1080, 400), (1080, 360), (20, 360)]  # Define region points
# region_points = [(20, 400), (1080, 400), (1080, 360), (20, 360), (20, 400)]  # Define polygon points

# Init heatmap
heatmap = solutions.Heatmap(
    show=True,  # Display the output
    model="yolo12s.pt",  # Path to the YOLO11 model file
    colormap=cv2.COLORMAP_PARULA,  # Colormap of heatmap
    # region=region_points,  # If you want to do object counting with heatmaps, you can pass region_points
    # classes=[0, 2],  # If you want to generate heatmap for specific classes i.e person and car.
    # show_in=True,  # Display in counts
    # show_out=True,  # Display out counts
    # line_width=2,  # Adjust the line width for bounding boxes and text display
)

# Process video
while cap.isOpened():
    success, im0 = cap.read()
    if not success:
        print("Video frame is empty or video processing has been successfully completed.")
        break
    im0 = heatmap.generate_heatmap(im0)
    im0_resized = cv2.resize(im0, (w, h))
    video_writer.write(im0_resized)

cap.release()
video_writer.release()
cv2.destroyAllWindows()
Copy after login

Output

3. Speed Estimation

YOLO v11

import cv2
from ultralytics import solutions
import numpy as np

cap = cv2.VideoCapture("cars_on_road.mp4")
assert cap.isOpened(), "Error reading video file"

# Capture video properties
w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = int(cap.get(cv2.CAP_PROP_FPS))

# Video writer
video_writer = cv2.VideoWriter("speed_management_yolov11.mp4", cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))

# Define speed region points (adjust for your video resolution)
speed_region = [(300, h - 200), (w - 100, h - 200), (w - 100, h - 270), (300, h - 270)]

# Initialize SpeedEstimator
speed = solutions.SpeedEstimator(
    show=False,  # Disable internal window display
    model="yolo11s.pt",  # Path to the YOLO model file
    region=speed_region,  # Pass region points
    # classes=[0, 2],  # Optional: Filter specific object classes (e.g., cars, trucks)
    # line_width=2,  # Optional: Adjust the line width
)

# Process video
while cap.isOpened():
    success, im0 = cap.read()
    if not success:
        print("Video frame is empty or video processing has been successfully completed.")
        break
    
    # Estimate speed and draw bounding boxes
    out = speed.estimate_speed(im0)

    # Draw the speed region on the frame
    cv2.polylines(out, [np.array(speed_region)], isClosed=True, color=(0, 255, 0), thickness=2)

    # Resize the frame to fit the screen
    im0_resized = cv2.resize(out, (1280, 720))  # Resize for better screen fit
    
    # Show the resized frame
    cv2.imshow("Speed Estimation", im0_resized)
    video_writer.write(out)

    # Press 'q' to exit
    if cv2.waitKey(1) & 0xFF == ord('q'):
        break

cap.release()
video_writer.release()
cv2.destroyAllWindows()
Copy after login

Output

YOLO v12

import cv2
from ultralytics import solutions
import numpy as np

cap = cv2.VideoCapture("cars_on_road.mp4")
assert cap.isOpened(), "Error reading video file"

# Capture video properties
w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = int(cap.get(cv2.CAP_PROP_FPS))

# Video writer
video_writer = cv2.VideoWriter("speed_management_yolov12.mp4", cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))

# Define speed region points (adjust for your video resolution)
speed_region = [(300, h - 200), (w - 100, h - 200), (w - 100, h - 270), (300, h - 270)]

# Initialize SpeedEstimator
speed = solutions.SpeedEstimator(
    show=False,  # Disable internal window display
    model="yolo12s.pt",  # Path to the YOLO model file
    region=speed_region,  # Pass region points
    # classes=[0, 2],  # Optional: Filter specific object classes (e.g., cars, trucks)
    # line_width=2,  # Optional: Adjust the line width
)

# Process video
while cap.isOpened():
    success, im0 = cap.read()
    if not success:
        print("Video frame is empty or video processing has been successfully completed.")
        break
    
    # Estimate speed and draw bounding boxes
    out = speed.estimate_speed(im0)

    # Draw the speed region on the frame
    cv2.polylines(out, [np.array(speed_region)], isClosed=True, color=(0, 255, 0), thickness=2)

    # Resize the frame to fit the screen
    im0_resized = cv2.resize(out, (1280, 720))  # Resize for better screen fit
    
    # Show the resized frame
    cv2.imshow("Speed Estimation", im0_resized)
    video_writer.write(out)

    # Press 'q' to exit
    if cv2.waitKey(1) & 0xFF == ord('q'):
        break

cap.release()
video_writer.release()
cv2.destroyAllWindows()
Copy after login

Output

Also Read: Top 30+ Computer Vision Models For 2025

Expert Opinions on YOLOv11 and YOLOv12

Muhammad Rizwan Munawar — Computer Vision Engineer at Ultralytics

“YOLOv12 introduces flash attention, which enhances accuracy, but it requires careful CUDA setup. It’s a solid step forward, especially for complex detection tasks, though YOLOv11 remains faster for real-time needs. In short, choose YOLOv12 for accuracy and YOLOv11 for speed.”

Linkedin Post – Is YOLOv12 really a state-of-the-art model? ?

Muhammad Rizwan, recently tested YOLOv11 and YOLOv12 side by side to break down their real-world performance. His findings highlight the trade-offs between the two models:

  • Frames Per Second (FPS): YOLOv11 maintains an average of 40 FPS, while YOLOv12 lags behind at 30 FPS. This makes YOLOv11 the better choice for real-time applications where speed is critical, such as traffic monitoring or live video feeds.
  • Training Time: YOLOv12 takes about 20% longer to train than YOLOv11. On a small dataset with 130 training images and 43 validation images, YOLOv11 completed training in 0.009 hours, while YOLOv12 needed 0.011 hours. While this might seem minor for small datasets, the difference becomes significant for larger-scale projects.
  • Accuracy: Both models achieved similar accuracy after fine-tuning for 10 epochs on the same dataset. YOLOv12 didn’t dramatically outperform YOLOv11 in terms of accuracy, suggesting the newer model’s improvements lie more in architectural enhancements than raw detection precision.
  • Flash Attention: YOLOv12 introduces flash attention, a powerful mechanism that speeds up and optimizes attention layers. However, there’s a catch — this feature isn’t natively supported on the CPU, and enabling it with CUDA requires careful version-specific setup. For teams without powerful GPUs or those working on edge devices, this can become a roadblock.

The PC specifications used for testing:

  • GPU: NVIDIA RTX 3050
  • CPU: Intel Core-i5-10400 @2.90GHz
  • RAM: 64 GB

The model specifications:

  • Model = YOLO11n.pt and YOLOv12n.pt
  • Image size = 640 for inference

Conclusion

YOLO v12 marks a significant leap forward in real-time object detection, combining CNN speed with Transformer-like attention mechanisms. With improved accuracy, lower computational costs, and a range of model variants, YOLO v12 is poised to redefine the landscape of real-time vision applications. Whether for autonomous vehicles, security surveillance, or medical imaging, YOLO v12 sets a new standard for real-time object detection efficiency.

What’s Next?

  • YOLO v13 Possibilities: Will future versions push the attention mechanisms even further?
  • Edge Device Optimization: Can Flash Attention or Area Attention be optimized for lower-power devices?

To help you better understand the differences, I’ve attached some code snippets and output results in the comparison section. These examples illustrate how both YOLOv11 and YOLOv12 perform in real-world scenarios, from object counting to speed estimation and heatmaps. I’m excited to see how you guys perceive this new release! Are the improvements in accuracy and attention mechanisms enough to justify the trade-offs in speed? Or do you think YOLOv11 still holds its ground for most applications?

The above is the detailed content of How to Use YOLO v12 for Object Detection?. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
4 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
4 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. How to Fix Audio if You Can't Hear Anyone
4 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Chat Commands and How to Use Them
4 weeks ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

I Tried Vibe Coding with Cursor AI and It's Amazing! I Tried Vibe Coding with Cursor AI and It's Amazing! Mar 20, 2025 pm 03:34 PM

Vibe coding is reshaping the world of software development by letting us create applications using natural language instead of endless lines of code. Inspired by visionaries like Andrej Karpathy, this innovative approach lets dev

Top 5 GenAI Launches of February 2025: GPT-4.5, Grok-3 & More! Top 5 GenAI Launches of February 2025: GPT-4.5, Grok-3 & More! Mar 22, 2025 am 10:58 AM

February 2025 has been yet another game-changing month for generative AI, bringing us some of the most anticipated model upgrades and groundbreaking new features. From xAI’s Grok 3 and Anthropic’s Claude 3.7 Sonnet, to OpenAI’s G

How to Use YOLO v12 for Object Detection? How to Use YOLO v12 for Object Detection? Mar 22, 2025 am 11:07 AM

YOLO (You Only Look Once) has been a leading real-time object detection framework, with each iteration improving upon the previous versions. The latest version YOLO v12 introduces advancements that significantly enhance accuracy

Is ChatGPT 4 O available? Is ChatGPT 4 O available? Mar 28, 2025 pm 05:29 PM

ChatGPT 4 is currently available and widely used, demonstrating significant improvements in understanding context and generating coherent responses compared to its predecessors like ChatGPT 3.5. Future developments may include more personalized interactions and real-time data processing capabilities, further enhancing its potential for various applications.

Best AI Art Generators (Free & Paid) for Creative Projects Best AI Art Generators (Free & Paid) for Creative Projects Apr 02, 2025 pm 06:10 PM

The article reviews top AI art generators, discussing their features, suitability for creative projects, and value. It highlights Midjourney as the best value for professionals and recommends DALL-E 2 for high-quality, customizable art.

Google's GenCast: Weather Forecasting With GenCast Mini Demo Google's GenCast: Weather Forecasting With GenCast Mini Demo Mar 16, 2025 pm 01:46 PM

Google DeepMind's GenCast: A Revolutionary AI for Weather Forecasting Weather forecasting has undergone a dramatic transformation, moving from rudimentary observations to sophisticated AI-powered predictions. Google DeepMind's GenCast, a groundbreak

o1 vs GPT-4o: Is OpenAI's New Model Better Than GPT-4o? o1 vs GPT-4o: Is OpenAI's New Model Better Than GPT-4o? Mar 16, 2025 am 11:47 AM

OpenAI's o1: A 12-Day Gift Spree Begins with Their Most Powerful Model Yet December's arrival brings a global slowdown, snowflakes in some parts of the world, but OpenAI is just getting started. Sam Altman and his team are launching a 12-day gift ex

Which AI is better than ChatGPT? Which AI is better than ChatGPT? Mar 18, 2025 pm 06:05 PM

The article discusses AI models surpassing ChatGPT, like LaMDA, LLaMA, and Grok, highlighting their advantages in accuracy, understanding, and industry impact.(159 characters)

See all articles