Recommended CentOS Stream 8 monitoring tools
Recommended CentOS Stream 8 system monitoring tool
CentOS Stream 8 provides a variety of monitoring tools to meet different monitoring needs. This article recommends several commonly used tools and briefly introduces their functions:
System performance monitoring
- top: Displays the usage of system process resources in real time, and is the most commonly used performance monitoring tool in Linux systems.
- htop: The enhanced version of the
top
command provides a more intuitive interface and interactive functions, and supports mouse operation. - vmstat: Reports information on virtual memory, processes, CPU activities, etc., and is used to monitor the overall performance of the system.
- iostat: Monitors the usage of system I/O devices, which is especially suitable for analyzing storage device performance.
- free: Check the system memory usage, including physical memory, swap memory and cache.
- sar: Collect, view and record system performance data, which can be used for long-term performance analysis.
Network monitoring
- iftop: Monitor network traffic in real time and visually display network traffic.
- tcpdump: Packet capture tool for network traffic analysis and problem diagnosis.
- nmcli: NetworkManager command line interface for managing network connections and device status.
- netstat: Display network connections, routing tables, interface statistics and other information to understand system network activities.
- ss: Displays socket statistics, faster than
netstat
, and is used to view TCP and UDP port usage.
Comprehensive monitoring
- Monitorix: Open source system monitoring tool, providing visual display of system indicators (such as CPU, memory, disk I/O, etc.).
Choosing the right monitoring tool depends on your specific needs. The above tools can effectively monitor and manage CentOS Stream 8 systems.
The above is the detailed content of Recommended CentOS Stream 8 monitoring tools. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



The CentOS shutdown command is shutdown, and the syntax is shutdown [Options] Time [Information]. Options include: -h Stop the system immediately; -P Turn off the power after shutdown; -r restart; -t Waiting time. Times can be specified as immediate (now), minutes ( minutes), or a specific time (hh:mm). Added information can be displayed in system messages.

Steps to configure IP address in CentOS: View the current network configuration: ip addr Edit the network configuration file: sudo vi /etc/sysconfig/network-scripts/ifcfg-eth0 Change IP address: Edit IPADDR= Line changes the subnet mask and gateway (optional): Edit NETMASK= and GATEWAY= Lines Restart the network service: sudo systemctl restart network verification IP address: ip addr

The key differences between CentOS and Ubuntu are: origin (CentOS originates from Red Hat, for enterprises; Ubuntu originates from Debian, for individuals), package management (CentOS uses yum, focusing on stability; Ubuntu uses apt, for high update frequency), support cycle (CentOS provides 10 years of support, Ubuntu provides 5 years of LTS support), community support (CentOS focuses on stability, Ubuntu provides a wide range of tutorials and documents), uses (CentOS is biased towards servers, Ubuntu is suitable for servers and desktops), other differences include installation simplicity (CentOS is thin)

CentOS installation steps: Download the ISO image and burn bootable media; boot and select the installation source; select the language and keyboard layout; configure the network; partition the hard disk; set the system clock; create the root user; select the software package; start the installation; restart and boot from the hard disk after the installation is completed.

Restarting the network in CentOS 8 requires the following steps: Stop the network service (NetworkManager) and reload the network module (r8169), start the network service (NetworkManager) and check the network status (by ping 8.8.8.8)

Docker uses Linux kernel features to provide an efficient and isolated application running environment. Its working principle is as follows: 1. The mirror is used as a read-only template, which contains everything you need to run the application; 2. The Union File System (UnionFS) stacks multiple file systems, only storing the differences, saving space and speeding up; 3. The daemon manages the mirrors and containers, and the client uses them for interaction; 4. Namespaces and cgroups implement container isolation and resource limitations; 5. Multiple network modes support container interconnection. Only by understanding these core concepts can you better utilize Docker.

CentOS has been discontinued, alternatives include: 1. Rocky Linux (best compatibility); 2. AlmaLinux (compatible with CentOS); 3. Ubuntu Server (configuration required); 4. Red Hat Enterprise Linux (commercial version, paid license); 5. Oracle Linux (compatible with CentOS and RHEL). When migrating, considerations are: compatibility, availability, support, cost, and community support.

After CentOS is stopped, users can take the following measures to deal with it: Select a compatible distribution: such as AlmaLinux, Rocky Linux, and CentOS Stream. Migrate to commercial distributions: such as Red Hat Enterprise Linux, Oracle Linux. Upgrade to CentOS 9 Stream: Rolling distribution, providing the latest technology. Select other Linux distributions: such as Ubuntu, Debian. Evaluate other options such as containers, virtual machines, or cloud platforms.
