SQL语言快速入门一
SQL是英文Structured Query Language的缩写,意思为结构化查询语言。SQL语言的主要功能就是同各种数据库建立联系,进行沟通。按照ANSI(美国国家标准协会)的规定,SQL被作为关系型数据库管理系统的标准语言。SQL语句可以用来执行各种各样的操作,例如更新数据库中的数据,从数据库中提取数据等。目前,绝大多数流行的关系型数据库管理系统,如Oracle, Sybase, Microsoft SQL Server, Access等都采用了SQL语言标准。虽然很多数据库都对SQL语句进行了再开发和扩展,但是包括Select, Insert, Update, Delete, Create, 以及Drop在内的标准的SQL命令仍然可以被用来完成几乎所有的数据库操作。下面,我们就来详细介绍一下SQL语言的基本知识。
数据库表格
一个典型的关系型数据库通常由一个或多个被称作表格的对象组成。数据库中的所有数据或信息都被保存在这些数据库表格中。数据库中的每一个表格都具有自己唯一的表格名称,都是由行和列组成,其中每一列包括了该列名称,数据类型,以及列的其它属性等信息,而行则具体包含某一列的记录或数据。以下,是一个名为天气的数据库表格的实例。
城市 最高气温 最低气温
北京 10 5
上海 15 8
天津 8 2
重庆 20 13
该表格中“城市”, “最高气温”和“最低气温”就是三个不同的列,而表格中的每一行则包含了具体的表格数据。
数据查询
在众多的SQL命令中,select语句应该算是使用最频繁的。Select语句主要被用来对数据库进行查询并返回符合用户查询标准的结果数据。Select语句的语法格式如下:
select column1 [, column2,etc] from tablename
[where condition];
([] 表示可选项)
select语句中位于select关键词之后的列名用来决定那些列将作为查询结果返回。用户可以按照自己的需要选择任意列,还可以使用通配符“*”来设定返回表格中的所有列。
select语句中位于from关键词之后的表格名称用来决定将要进行查询操作的目标表格。
Select语句中的where可选从句用来规定哪些数据值或哪些行将被作为查询结果返回或显示。
在where条件从句中可以使用以下一些运算符来设定查询标准:
= 等于
> 大于
>= 大于等于
不等于
除了上面所提到的运算符外,LIKE运算符在where条件从句中也非常重要。LIKE运算符的功能非常强大,通过使用LIKE运算符可以设定只选择与用户规定格式相同的记录。此外,我们还可以使用通配符“%”用来代替任何字符串。举例如下:
select firstname, lastname, city
from employee
where firstname LIKE ‘E%’;
(注意,字符串必须被包含在单括号内)
上述SQL语句将会查询所有名称以E开头的姓名。或者,通过如下语句:
select * from employee
where firstname = ‘May’;
查询所有名称为May的行。

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



Diffusion can not only imitate better, but also "create". The diffusion model (DiffusionModel) is an image generation model. Compared with the well-known algorithms such as GAN and VAE in the field of AI, the diffusion model takes a different approach. Its main idea is a process of first adding noise to the image and then gradually denoising it. How to denoise and restore the original image is the core part of the algorithm. The final algorithm is able to generate an image from a random noisy image. In recent years, the phenomenal growth of generative AI has enabled many exciting applications in text-to-image generation, video generation, and more. The basic principle behind these generative tools is the concept of diffusion, a special sampling mechanism that overcomes the limitations of previous methods.

HQL and SQL are compared in the Hibernate framework: HQL (1. Object-oriented syntax, 2. Database-independent queries, 3. Type safety), while SQL directly operates the database (1. Database-independent standards, 2. Complex executable queries and data manipulation).

Kimi: In just one sentence, in just ten seconds, a PPT will be ready. PPT is so annoying! To hold a meeting, you need to have a PPT; to write a weekly report, you need to have a PPT; to make an investment, you need to show a PPT; even when you accuse someone of cheating, you have to send a PPT. College is more like studying a PPT major. You watch PPT in class and do PPT after class. Perhaps, when Dennis Austin invented PPT 37 years ago, he did not expect that one day PPT would become so widespread. Talking about our hard experience of making PPT brings tears to our eyes. "It took three months to make a PPT of more than 20 pages, and I revised it dozens of times. I felt like vomiting when I saw the PPT." "At my peak, I did five PPTs a day, and even my breathing was PPT." If you have an impromptu meeting, you should do it

In the early morning of June 20th, Beijing time, CVPR2024, the top international computer vision conference held in Seattle, officially announced the best paper and other awards. This year, a total of 10 papers won awards, including 2 best papers and 2 best student papers. In addition, there were 2 best paper nominations and 4 best student paper nominations. The top conference in the field of computer vision (CV) is CVPR, which attracts a large number of research institutions and universities every year. According to statistics, a total of 11,532 papers were submitted this year, and 2,719 were accepted, with an acceptance rate of 23.6%. According to Georgia Institute of Technology’s statistical analysis of CVPR2024 data, from the perspective of research topics, the largest number of papers is image and video synthesis and generation (Imageandvideosyn

System76 has made waves recently with its Cosmic desktop environment, which is slated to launch with the next major alpha build of Pop!_OS on August 8. However, a recent post on X by System76 CEO, Carl Richell, has tipped that the Cosmic DE developer

We know that LLM is trained on large-scale computer clusters using massive data. This site has introduced many methods and technologies used to assist and improve the LLM training process. Today, what we want to share is an article that goes deep into the underlying technology and introduces how to turn a bunch of "bare metals" without even an operating system into a computer cluster for training LLM. This article comes from Imbue, an AI startup that strives to achieve general intelligence by understanding how machines think. Of course, turning a bunch of "bare metal" without an operating system into a computer cluster for training LLM is not an easy process, full of exploration and trial and error, but Imbue finally successfully trained an LLM with 70 billion parameters. and in the process accumulate

Abbreviations and acronyms should be used in Go function naming to improve readability, following the following rules: Abbreviation: keep the first letter of the word, followed by a lowercase letter, only for common words. Acronym: An abbreviation for a word or group of words that begins with a capital letter and is followed by a lowercase letter.

Title: A must-read for technical beginners: Difficulty analysis of C language and Python, requiring specific code examples In today's digital age, programming technology has become an increasingly important ability. Whether you want to work in fields such as software development, data analysis, artificial intelligence, or just learn programming out of interest, choosing a suitable programming language is the first step. Among many programming languages, C language and Python are two widely used programming languages, each with its own characteristics. This article will analyze the difficulty levels of C language and Python
