跟老齐学Python之编写类之三子类
关于类,看官想必已经有了感觉,看下面的代码,请仔细阅读,并看看是否能够发现点什么问题呢?
#!/usr/bin/env python
#coding:utf-8
class Person:
def __init__(self, name, lang, email):
self.name = name
self.lang = lang
self.email = email
def author(self):
return self.name
class Programmer:
def __init__(self, name, lang, email, system, website):
self.name = name
self.lang = lang
self.email = email
self.system = system
self.website = website
def pythoner(self):
pythoner_list = [ self.name, self.lang, self.email, self.system, self.website ]
return pythoner_list
if __name__=="__main__":
writer = Person("qiwsir","Chinese","qiwsir@gmail.com")
python = Programmer("qiwsir","Python","qiwsir@gmail.com","Ubutun","qiwsir.github.io")
print "My name is:%s"%writer.author()
print "I write program by:%s"%python.pythoner()[1]
上面这段代码,运行起来没有什么问题,但是,仔细看,发现有两个类,一个名字叫做Person,另外一个叫做Programmer,这还不是问题所在,问题所在是这两个类的构造函数中,存在这相同的地方:self.name=name,self.lang=lang,self.email=email,这对于追求代码质量的程序员,一般是不允许的。最好不要有重复代码或者冗余代码。可是,在两个类中都要有这些参数,应该怎么办呢?
子类、父类和继承
看下面的代码,里面有两个类A,B。这段程序能够正确运行,每个类的功能是仅仅打印指定的内容。
#!/usr/bin/env python
#coding:utf-8
class A:
def __init__(self):
print "aaa"
class B:
def __init__(self):
print "bbb"
if __name__=="__main__":
a = A()
b = B()
#运行结果
aaa
bbb
上面的两个类彼此之间没有所谓的父子关系。现在稍加改变,将类B改写,注意观察与上面的差异。
#coding:utf-8
class A:
def __init__(self):
print "aaa"
class B(A): #这里和上面程序不同。B继承了A
def __init__(self):
print "bbb"
if __name__=="__main__":
a = A()
b = B()
#运行结果
aaa
bbb
这段程序中,类B跟前面的那段有一点不同,class B(A):,这样写就表明了B相对A的关系:B是A的子类,B从A继承A的所有东西(子承父业)。
但是,看官发现了没有,运行结果一样。是的,那是以为在B中尽管继承了A,但是没有调用任何A的东西,就好比儿子从老爸那里继承了财富,但是儿子一个子也没动,外界看到的和没有继承一样。
#!/usr/bin/env python
#coding:utf-8
class A:
def __init__(self):
print "aaa"
class B(A):
def __init__(self):
#print "bbb"
A.__init__(self) #运行继承的父类
if __name__=="__main__":
a = A()
b = B()
#运行结果
aaa
aaa
这回运行结果有了变化,本来b=B()是运行类B,但是B继承了A,并且在初始化的构造函数中,引入A的构造函数,所以,就运行A的结果相应结果了。
下面把最开头的那端程序用子类继承的方式重写,可以是这样的:
#!/usr/bin/env python
#coding:utf-8
class Person:
def __init__(self, name, lang, email):
self.name = name
self.lang = lang
self.email = email
def author(self):
return self.name
"""
class Programmer:
def __init__(self, name, lang, email, system, website):
self.name = name
self.lang = lang
self.email = email
self.system = system
self.website = website
def pythoner(self):
pythoner_list = [ self.name, self.lang, self.email, self.system, self.website ]
return pythoner_list
"""
class Programmer(Person): #继承父类Person
def __init__(self, name, lang, email, system, website):
Person.__init__(self,name,lang,email) #将Person.__init__()的功能继承到这里
#self.name = name #这三句是Person中已经搞定的,就不用重复
#self.lang = lang #通过继承已经实现了这三句的功能
#self.email = email
self.system = system #子类中不同于Person父类部分
self.website = website
def pythoner(self):
pythoner_list = [ self.name, self.lang, self.email, self.system, self.website ]
return pythoner_list
if __name__=="__main__":
writer = Person("qiwsir","Chinese","qiwsir@gmail.com")
python = Programmer("qiwsir","Python","qiwsir@gmail.com","Ubutun","qiwsir.github.io")
print "My name is:%s"%writer.author()
print "I write program by:%s"%python.pythoner()[1]
代码运行结果与前面一样。
列位是否理解了子类和父类、继承的特点。如果你有一个老爹,是一个高官或者富豪,那么你就官二代或者富二代了,你就从他们那里继承了很多财富,所以生活就不用太劳累了。这就是继承的作用。在代码中,也类似,继承能够让写代码的少劳累一些。
对于为什么要用继承,好友@令狐虫 大侠给了以非常精彩的解释:
从技术上说,OOP里,继承最主要的用途是实现多 态。对于多态而言,重要的是接口继承性,属性和行为是否存在继承性,这是不一定的。事实上,大量工程实践表明,重度的行为继承会导致系统过度复杂和臃肿, 反而会降低灵活性。因此现在比较提倡的是基于接口的轻度继承理念。这种模型里因为父类(接口类)完全没有代码,因此根本谈不上什么代码复用了。
在Python里,因为存在Duck Type,接口定义的重要性大大的降低,继承的作用也进一步的被削弱了。
另外,从逻辑上说,继承的目的也不是为了复用代码,而是为了理顺关系。
我表示完全赞同上述解释。不过看官如果不理解,也没有关系,上述解释中的精神,的确需要在编程实践中感悟才能领会到的。

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

This tutorial demonstrates how to use Python to process the statistical concept of Zipf's law and demonstrates the efficiency of Python's reading and sorting large text files when processing the law. You may be wondering what the term Zipf distribution means. To understand this term, we first need to define Zipf's law. Don't worry, I'll try to simplify the instructions. Zipf's Law Zipf's law simply means: in a large natural language corpus, the most frequently occurring words appear about twice as frequently as the second frequent words, three times as the third frequent words, four times as the fourth frequent words, and so on. Let's look at an example. If you look at the Brown corpus in American English, you will notice that the most frequent word is "th

This article explains how to use Beautiful Soup, a Python library, to parse HTML. It details common methods like find(), find_all(), select(), and get_text() for data extraction, handling of diverse HTML structures and errors, and alternatives (Sel

This article compares TensorFlow and PyTorch for deep learning. It details the steps involved: data preparation, model building, training, evaluation, and deployment. Key differences between the frameworks, particularly regarding computational grap

Python's statistics module provides powerful data statistical analysis capabilities to help us quickly understand the overall characteristics of data, such as biostatistics and business analysis. Instead of looking at data points one by one, just look at statistics such as mean or variance to discover trends and features in the original data that may be ignored, and compare large datasets more easily and effectively. This tutorial will explain how to calculate the mean and measure the degree of dispersion of the dataset. Unless otherwise stated, all functions in this module support the calculation of the mean() function instead of simply summing the average. Floating point numbers can also be used. import random import statistics from fracti

Serialization and deserialization of Python objects are key aspects of any non-trivial program. If you save something to a Python file, you do object serialization and deserialization if you read the configuration file, or if you respond to an HTTP request. In a sense, serialization and deserialization are the most boring things in the world. Who cares about all these formats and protocols? You want to persist or stream some Python objects and retrieve them in full at a later time. This is a great way to see the world on a conceptual level. However, on a practical level, the serialization scheme, format or protocol you choose may determine the speed, security, freedom of maintenance status, and other aspects of the program

The article discusses popular Python libraries like NumPy, Pandas, Matplotlib, Scikit-learn, TensorFlow, Django, Flask, and Requests, detailing their uses in scientific computing, data analysis, visualization, machine learning, web development, and H

This article guides Python developers on building command-line interfaces (CLIs). It details using libraries like typer, click, and argparse, emphasizing input/output handling, and promoting user-friendly design patterns for improved CLI usability.

This tutorial builds upon the previous introduction to Beautiful Soup, focusing on DOM manipulation beyond simple tree navigation. We'll explore efficient search methods and techniques for modifying HTML structure. One common DOM search method is ex
