在Python中使用异步Socket编程性能测试
OK,首先写一个python socket的server段,对开放三个端口:10000,10001,10002.krondo的例子中是每个server绑定一个端口,测试的时候需要分别开3个shell,分别运行.这太麻烦了,就分别用三个Thread来运行这些services.
import optparse import os import socket import time from threading import Thread import StringIO txt = '''1111 2222 3333 4444 ''' def server(listen_socket): while True: buf = StringIO.StringIO(txt) sock, addr = listen_socket.accept() print 'Somebody at %s wants poetry!' % (addr,) while True: try: line = buf.readline().strip() if not line: sock.close() break sock.sendall(line) # this is a blocking call print 'send bytes to client:%s' % line #sock.close() except socket.error: sock.close() break time.sleep(1) #server和client连接后,server会故意每发送一个单词后等待一秒钟后再发送另一个单词 def main(): ports = [10000, 10001, 10002] for port in ports: listen_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) listen_socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) addres = (str('127.0.0.1'), port) listen_socket.bind(addres) listen_socket.listen(5) print "start listen at:%s" % (port,) worker = Thread(target = server, args = [listen_socket]) worker.setDaemon(True) worker.start() if __name__ == '__main__': main() while True: time.sleep(0.1) #如果不sleep的话,CPU会被Python完全占用了 pass
下面是一个client,没有才用异步网络,连接这个三个端口的server:
import socket if __name__ == '__main__': ports = [10000, 10001, 10002] for port in ports: address = (str('127.0.0.1'), port) sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.connect(address) poem = '' while True: data = sock.recv(4) if not data: sock.close() break poem += data print poem
下面用异步的client来读取,代码如下:
import datetime, errno, optparse, select, socket def connect(port): """Connect to the given server and return a non-blocking socket.""" address = (str('127.0.0.1'), port) sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.connect(address) sock.setblocking(0) return sock def format_address(address): host, port = address return '%s:%s' % (host or '127.0.0.1', port) if __name__ == '__main__': ports = [10000, 10001, 10002] start = datetime.datetime.now() sockets = map(connect, ports) poems = dict.fromkeys(sockets, '') # socket -> accumulated poem # socket -> task numbers sock2task = dict([(s, i + 1) for i, s in enumerate(sockets)]) sockets = list(sockets) # make a copy while sockets: #运用select来确保那些可读取的异步socket可以立即开始读取IO #OS不停的搜索目前可以read的socket,有的话就返回rlist rlist, _, _ = select.select(sockets, [], []) for sock in rlist: data = '' while True: try: new_data = sock.recv(1024) except socket.error, e: if e.args[0] == errno.EWOULDBLOCK: break raise else: if not new_data: break else: print new_data data += new_data task_num = sock2task[sock] if not data: sockets.remove(sock) sock.close() print 'Task %d finished' % task_num else: addr_fmt = format_address(sock.getpeername()) msg = 'Task %d: got %d bytes of poetry from %s' print msg % (task_num, len(data), addr_fmt) poems[sock] += data elapsed = datetime.datetime.now() - start print 'Got poems in %s' % elapsed
结果只需要4秒就完成了读取任务。效率是刚才同步socket的三倍。对客户端的异步改造主要有两点:
同步模式下,客户端分别创建socket;而在异步模式下,client开始就创建了所有的socket。
通过“sock.setblocking(0)”设置socket为异步模式。
通过Unix系统的select俩返回可读取IO
最为核心的是26行和29行。尤其是29行的select操作返回待读取socket的列表。

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

Google AI has started to provide developers with access to extended context windows and cost-saving features, starting with the Gemini 1.5 Pro large language model (LLM). Previously available through a waitlist, the full 2 million token context windo

How to download DeepSeek Xiaomi? Search for "DeepSeek" in the Xiaomi App Store. If it is not found, continue to step 2. Identify your needs (search files, data analysis), and find the corresponding tools (such as file managers, data analysis software) that include DeepSeek functions.

The key to using DeepSeek effectively is to ask questions clearly: express the questions directly and specifically. Provide specific details and background information. For complex inquiries, multiple angles and refute opinions are included. Focus on specific aspects, such as performance bottlenecks in code. Keep a critical thinking about the answers you get and make judgments based on your expertise.

Just use the search function that comes with DeepSeek. Its powerful semantic analysis algorithm can accurately understand the search intention and provide relevant information. However, for searches that are unpopular, latest information or problems that need to be considered, it is necessary to adjust keywords or use more specific descriptions, combine them with other real-time information sources, and understand that DeepSeek is just a tool that requires active, clear and refined search strategies.

DeepSeek is not a programming language, but a deep search concept. Implementing DeepSeek requires selection based on existing languages. For different application scenarios, it is necessary to choose the appropriate language and algorithms, and combine machine learning technology. Code quality, maintainability, and testing are crucial. Only by choosing the right programming language, algorithms and tools according to your needs and writing high-quality code can DeepSeek be successfully implemented.

Question: Is DeepSeek available for accounting? Answer: No, it is a data mining and analysis tool that can be used to analyze financial data, but it does not have the accounting record and report generation functions of accounting software. Using DeepSeek to analyze financial data requires writing code to process data with knowledge of data structures, algorithms, and DeepSeek APIs to consider potential problems (e.g. programming knowledge, learning curves, data quality)

Python is an ideal programming introduction language for beginners through its ease of learning and powerful features. Its basics include: Variables: used to store data (numbers, strings, lists, etc.). Data type: Defines the type of data in the variable (integer, floating point, etc.). Operators: used for mathematical operations and comparisons. Control flow: Control the flow of code execution (conditional statements, loops).

Pythonempowersbeginnersinproblem-solving.Itsuser-friendlysyntax,extensivelibrary,andfeaturessuchasvariables,conditionalstatements,andloopsenableefficientcodedevelopment.Frommanagingdatatocontrollingprogramflowandperformingrepetitivetasks,Pythonprovid
