Home > Backend Development > Python Tutorial > python数据结构之二叉树的遍历实例

python数据结构之二叉树的遍历实例

WBOY
Release: 2016-06-16 08:44:16
Original
1341 people have browsed it

遍历方案
    从二叉树的递归定义可知,一棵非空的二叉树由根结点及左、右子树这三个基本部分组成。因此,在任一给定结点上,可以按某种次序执行三个操作:
    1).访问结点本身(N)
    2).遍历该结点的左子树(L)
    3).遍历该结点的右子树(R)

有次序:
    NLR、LNR、LRN

遍历的命名

    根据访问结点操作发生位置命名:
NLR:前序遍历(PreorderTraversal亦称(先序遍历))  ——访问结点的操作发生在遍历其左右子树之前。
LNR:中序遍历(InorderTraversal)  ——访问结点的操作发生在遍历其左右子树之中(间)。
LRN:后序遍历(PostorderTraversal)    ——访问结点的操作发生在遍历其左右子树之后。

注:由于被访问的结点必是某子树的根,所以N(Node)、L(Left subtlee)和R(Right subtree)又可解释为根、根的左子树和根的右子树。NLR、LNR和LRN分别又称为先根遍历、中根遍历和后根遍历。

遍历算法

1).先序遍历的递归算法定义:
若二叉树非空,则依次执行如下操作:
a.访问根结点
b.遍历左子树
c.遍历右子树

2).中序遍历的递归算法定义:
若二叉树非空,则依次执行如下操作:
a.遍历左子树
b.访问根结点
c.遍历右子树

3).后序遍历得递归算法定义:
若二叉树非空,则依次执行如下操作:
a.遍历左子树
b.遍历右子树
c.访问根结点

一、二叉树的递归遍历:

复制代码 代码如下:

# -*- coding: utf - 8 - *-

class TreeNode(object):

    def __init__(self, left=0, right=0, data=0):
        self.left = left
        self.right = right
        self.data = data

     
class BTree(object):

    def __init__(self, root=0):
        self.root = root

    def is_empty(self):
        if self.root is 0:
            return True
        else:
            return False

    def preorder(self, treenode):
        '前序(pre-order,NLR)遍历'
        if treenode is 0:
            return
        print treenode.data
        self.preorder(treenode.left)
        self.preorder(treenode.right)

    def inorder(self, treenode):
        '中序(in-order,LNR'
        if treenode is 0:
            return
        self.inorder(treenode.left)
        print treenode.data
        self.inorder(treenode.right)

    def postorder(self, treenode):
        '后序(post-order,LRN)遍历'
        if treenode is 0:
            return
        self.postorder(treenode.left)
        self.postorder(treenode.right)
        print treenode.data

     
node1 = TreeNode(data=1)
node2 = TreeNode(node1, 0, 2)
node3 = TreeNode(data=3)
node4 = TreeNode(data=4)
node5 = TreeNode(node3, node4, 5)
node6 = TreeNode(node2, node5, 6)
node7 = TreeNode(node6, 0, 7)
node8 = TreeNode(data=8)
root = TreeNode(node7, node8, 'root')

bt = BTree(root)

print u'''

#生成的二叉树

# ------------------------
#          root
#       7        8
#     6
#   2   5
# 1    3 4
#
# -------------------------

'''
print '前序(pre-order,NLR)遍历 :\n'
bt.preorder(bt.root)

print '中序(in-order,LNR) 遍历 :\n'
bt.inorder(bt.root)

print '后序(post-order,LRN)遍历 :\n'
bt.postorder(bt.root)


二、.二叉树的非递归遍历

下面就用非递归的方式实现一遍。主要用到了 stack 和 queue维护一些数据节点:

复制代码 代码如下:

# -*- coding: utf - 8 - *-

     
class TreeNode(object):

    def __init__(self, left=0, right=0, data=0):
        self.left = left
        self.right = right
        self.data = data

     
class BTree(object):

    def __init__(self, root=0):
        self.root = root

    def is_empty(self):
        if self.root is 0:
            return True
        else:
            return False

    def preorder(self, treenode):
        '前序(pre-order,NLR)遍历'
        stack = []
        while treenode or stack:
            if treenode is not 0:
                print treenode.data
                stack.append(treenode)
                treenode = treenode.left
            else:
                treenode = stack.pop()
                treenode = treenode.right

    def inorder(self, treenode):
        '中序(in-order,LNR) 遍历'
        stack = []
        while treenode or stack:
            if treenode:
                stack.append(treenode)
                treenode = treenode.left
            else:
                treenode = stack.pop()
                print treenode.data
                treenode = treenode.right

    # def postorder(self, treenode):
    #     stack = []
    #     pre = 0
    #     while treenode or stack:
    #         if treenode:
    #             stack.append(treenode)
    #             treenode = treenode.left
    #         elif stack[-1].right != pre:
    #             treenode = stack[-1].right
    #             pre = 0
    #         else:
    #             pre = stack.pop()
    #             print pre.data

    def postorder(self, treenode):
        '后序(post-order,LRN)遍历'
        stack = []
        queue = []
        queue.append(treenode)
        while queue:
            treenode = queue.pop()
            if treenode.left:
                queue.append(treenode.left)
            if treenode.right:
                queue.append(treenode.right)
            stack.append(treenode)
        while stack:
            print stack.pop().data

    def levelorder(self, treenode):
        from collections import deque
        if not treenode:
            return
        q = deque([treenode])
        while q:
            treenode = q.popleft()
            print treenode.data
            if treenode.left:
                q.append(treenode.left)
            if treenode.right:
                q.append(treenode.right)

     
node1 = TreeNode(data=1)
node2 = TreeNode(node1, 0, 2)
node3 = TreeNode(data=3)
node4 = TreeNode(data=4)
node5 = TreeNode(node3, node4, 5)
node6 = TreeNode(node2, node5, 6)
node7 = TreeNode(node6, 0, 7)
node8 = TreeNode(data=8)
root = TreeNode(node7, node8, 'root')

     
bt = BTree(root)

print u'''

#生成的二叉树

# ------------------------
#          root
#       7        8
#     6
#   2   5
# 1    3 4
#
# -------------------------

'''
print '前序(pre-order,NLR)遍历 :\n'
bt.preorder(bt.root)

print '中序(in-order,LNR) 遍历 :\n'
bt.inorder(bt.root)

print '后序(post-order,LRN)遍历 :\n'
bt.postorder(bt.root)

print '层序(level-order,LRN)遍历 :\n'
bt.levelorder(bt.root)
source:php.cn
Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Popular Tutorials
More>
Latest Downloads
More>
Web Effects
Website Source Code
Website Materials
Front End Template