python数据库操作常用功能使用详解(创建表/插入数据/获取数据)
实例1、取得MYSQL版本
# -*- coding: UTF-8 -*-
#安装MYSQL DB for python
import MySQLdb as mdb
con = None
try:
#连接mysql的方法:connect('ip','user','password','dbname')
con = mdb.connect('localhost', 'root',
'root', 'test');
#所有的查询,都在连接con的一个模块cursor上面运行的
cur = con.cursor()
#执行一个查询
cur.execute("SELECT VERSION()")
#取得上个查询的结果,是单个结果
data = cur.fetchone()
print "Database version : %s " % data
finally:
if con:
#无论如何,连接记得关闭
con.close()
执行结果:
Database version : 5.5.25
实例2、创建一个表并且插入数据
# -*- coding: UTF-8 -*-
import MySQLdb as mdb
import sys
#将con设定为全局连接
con = mdb.connect('localhost', 'root', 'root', 'test');
with con:
#获取连接的cursor,只有获取了cursor,我们才能进行各种操作
cur = con.cursor()
#创建一个数据表 writers(id,name)
cur.execute("CREATE TABLE IF NOT EXISTS \
Writers(Id INT PRIMARY KEY AUTO_INCREMENT, Name VARCHAR(25))")
#以下插入了5条数据
cur.execute("INSERT INTO Writers(Name) VALUES('Jack London')")
cur.execute("INSERT INTO Writers(Name) VALUES('Honore de Balzac')")
cur.execute("INSERT INTO Writers(Name) VALUES('Lion Feuchtwanger')")
cur.execute("INSERT INTO Writers(Name) VALUES('Emile Zola')")
cur.execute("INSERT INTO Writers(Name) VALUES('Truman Capote')")
实例3、python使用slect获取mysql的数据并遍历
# -*- coding: UTF-8 -*-
import MySQLdb as mdb
import sys
#连接mysql,获取连接的对象
con = mdb.connect('localhost', 'root', 'root', 'test');
with con:
#仍然是,第一步要获取连接的cursor对象,用于执行查询
cur = con.cursor()
#类似于其他语言的query函数,execute是python中的执行查询函数
cur.execute("SELECT * FROM Writers")
#使用fetchall函数,将结果集(多维元组)存入rows里面
rows = cur.fetchall()
#依次遍历结果集,发现每个元素,就是表中的一条记录,用一个元组来显示
for row in rows:
print row
执行结果:
(1L, ‘Jack London')
(2L, ‘Honore de Balzac')
(3L, ‘Lion Feuchtwanger')
(4L, ‘Emile Zola')
(5L, ‘Truman Capote')
实例4、使用字典cursor取得结果集(可以使用表字段名字访问值)
# -*- coding: UTF-8 -*-
# 来源:疯狂的蚂蚁的博客www.server110.com总结整理
import MySQLdb as mdb
import sys
#获得mysql查询的链接对象
con = mdb.connect('localhost', 'root', 'root', 'test')
with con:
#获取连接上的字典cursor,注意获取的方法,
#每一个cursor其实都是cursor的子类
cur = con.cursor(mdb.cursors.DictCursor)
#执行语句不变
cur.execute("SELECT * FROM Writers")
#获取数据方法不变
rows = cur.fetchall()
#遍历数据也不变(比上一个更直接一点)
for row in rows:
#这里,可以使用键值对的方法,由键名字来获取数据
print "%s %s" % (row["Id"], row["Name"])
实例5、获取单个表的字段名和信息的方法
# -*- coding: UTF-8 -*-
# 来源:疯狂的蚂蚁的博客www.server110.com总结整理
import MySQLdb as mdb
import sys
#获取数据库的链接对象
con = mdb.connect('localhost', 'root', 'root', 'test')
with con:
#获取普通的查询cursor
cur = con.cursor()
cur.execute("SELECT * FROM Writers")
rows = cur.fetchall()
#获取连接对象的描述信息
desc = cur.description
print 'cur.description:',desc
#打印表头,就是字段名字
print "%s %3s" % (desc[0][0], desc[1][0])
for row in rows:
#打印结果
print "%2s %3s" % row
运行结果: cur.description: ((‘Id', 3, 1, 11, 11, 0, 0), (‘Name', 253, 17, 25, 25, 0, 1))
Id Name
1 Jack London
2 Honore de Balzac
3 Lion Feuchtwanger
4 Emile Zola
5 Truman Capote
实例6、使用Prepared statements执行查询(更安全方便)
# -*- coding: UTF-8 -*-
# 来源:疯狂的蚂蚁的博客www.server110.com总结整理
import MySQLdb as mdb
import sys
con = mdb.connect('localhost', 'root', 'root', 'test')
with con:
cur = con.cursor()
#我们看到,这里可以通过写一个可以组装的sql语句来进行
cur.execute("UPDATE Writers SET Name = %s WHERE Id = %s",
("Guy de Maupasant", "4"))
#使用cur.rowcount获取影响了多少行
print "Number of rows updated: %d" % cur.rowcount
结果:
Number of rows updated: 1

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

This tutorial demonstrates how to use Python to process the statistical concept of Zipf's law and demonstrates the efficiency of Python's reading and sorting large text files when processing the law. You may be wondering what the term Zipf distribution means. To understand this term, we first need to define Zipf's law. Don't worry, I'll try to simplify the instructions. Zipf's Law Zipf's law simply means: in a large natural language corpus, the most frequently occurring words appear about twice as frequently as the second frequent words, three times as the third frequent words, four times as the fourth frequent words, and so on. Let's look at an example. If you look at the Brown corpus in American English, you will notice that the most frequent word is "th

This article explains how to use Beautiful Soup, a Python library, to parse HTML. It details common methods like find(), find_all(), select(), and get_text() for data extraction, handling of diverse HTML structures and errors, and alternatives (Sel

Python's statistics module provides powerful data statistical analysis capabilities to help us quickly understand the overall characteristics of data, such as biostatistics and business analysis. Instead of looking at data points one by one, just look at statistics such as mean or variance to discover trends and features in the original data that may be ignored, and compare large datasets more easily and effectively. This tutorial will explain how to calculate the mean and measure the degree of dispersion of the dataset. Unless otherwise stated, all functions in this module support the calculation of the mean() function instead of simply summing the average. Floating point numbers can also be used. import random import statistics from fracti

This article compares TensorFlow and PyTorch for deep learning. It details the steps involved: data preparation, model building, training, evaluation, and deployment. Key differences between the frameworks, particularly regarding computational grap

Serialization and deserialization of Python objects are key aspects of any non-trivial program. If you save something to a Python file, you do object serialization and deserialization if you read the configuration file, or if you respond to an HTTP request. In a sense, serialization and deserialization are the most boring things in the world. Who cares about all these formats and protocols? You want to persist or stream some Python objects and retrieve them in full at a later time. This is a great way to see the world on a conceptual level. However, on a practical level, the serialization scheme, format or protocol you choose may determine the speed, security, freedom of maintenance status, and other aspects of the program

The article discusses popular Python libraries like NumPy, Pandas, Matplotlib, Scikit-learn, TensorFlow, Django, Flask, and Requests, detailing their uses in scientific computing, data analysis, visualization, machine learning, web development, and H

This tutorial builds upon the previous introduction to Beautiful Soup, focusing on DOM manipulation beyond simple tree navigation. We'll explore efficient search methods and techniques for modifying HTML structure. One common DOM search method is ex

This article guides Python developers on building command-line interfaces (CLIs). It details using libraries like typer, click, and argparse, emphasizing input/output handling, and promoting user-friendly design patterns for improved CLI usability.
