Home > php教程 > php手册 > 邻接矩阵prim:php实现图的邻接矩阵及普里姆(prim算法),弗洛伊德(floyd),迪杰斯特拉(dijkstra)算法

邻接矩阵prim:php实现图的邻接矩阵及普里姆(prim算法),弗洛伊德(floyd),迪杰斯特拉(dijkstra)算法

WBOY
Release: 2016-06-21 08:51:33
Original
1504 people have browsed it

require 'mgraph.php';
$a = array('a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i');
$b = array('ab'=>'10', 'af'=>'11', 'bg'=>'16', 'fg'=>'17', 'bc'=>'18', 'bi'=>'12', 'ci'=>'8', 'cd'=>'22', 'di'=>'21', 'dg'=>'24', 'gh'=>'19', 'dh'=>'16', 'de'=>'20', 'eh'=>'7','fe'=>'26');//键为边,值权值
$test = new mgraph($a, $b);
print_r($test->prim());
?>
mgraph.php
/**
* php 实现图邻接矩阵
*
* @author zhaojiangwei
* @since 2011/10/31 17:23
*/
class mgraph{
private $vexs; //顶点数组
private $arc; //边邻接矩阵,即二维数组
private $arcdata; //边的数组信息
private $direct; //图的类型(无向或有向)
private $haslist; //尝试遍历时存储遍历过的结点
private $queue; //广度优先遍历时存储孩子结点的队列,用数组模仿
private $infinity = 65535;//代表无穷,即两点无连接,建带权值的图时用,本示例不带权值
private $primvexs; //prim算法时保存顶点
private $primarc; //prim算法时保存边
private $krus;//kruscal算法时保存边的信息
public function mgraph($vexs, $arc, $direct = 0){
$this->vexs = $vexs;
$this->arcdata = $arc;
$this->direct = $direct;
$this->initalizearc();
$this->createarc();
}
private function initalizearc(){
foreach($this->vexs as $value){
foreach($this->vexs as $cvalue){
$this->arc[$value][$cvalue] = ($value == $cvalue ? 0 : $this->infinity);
}
}
}
//创建图 $direct:0表示无向图,1表示有向图
private function createarc(){
foreach($this->arcdata as $key=>$value){
$strarr = str_split($key);
$first = $strarr[0];
$last = $strarr[1];
$this->arc[$first][$last] = $value;
if(!$this->direct){
$this->arc[$last][$first] = $value;
}
}
}
//floyd算法
public function floyd(){
$path = array();//路径数组
$distance = array();//距离数组
foreach($this->arc as $key=>$value){
foreach($value as $k=>$v){
$path[$key][$k] = $k;
$distance[$key][$k] = $v;
}
}
for($j = 0; $j vexs); $j ++){
for($i = 0; $i vexs); $i ++){
for($k = 0; $k vexs); $k ++){
if($distance[$this->vexs[$i]][$this->vexs[$k]] > $distance[$this->vexs[$i]][$this->vexs[$j]] + $distance[$this->vexs[$j]][$this->vexs[$k]]){
$path[$this->vexs[$i]][$this->vexs[$k]] = $path[$this->vexs[$i]][$this->vexs[$j]];
$distance[$this->vexs[$i]][$this->vexs[$k]] = $distance[$this->vexs[$i]][$this->vexs[$j]] + $distance[$this->vexs[$j]][$this->vexs[$k]];
}
}
}
}
return array($path, $distance);
}
//djikstra算法
public function dijkstra(){
$final = array();
$pre = array();//要查找的结点的前一个结点数组
$weight = array();//权值和数组
foreach($this->arc[$this->vexs[0]] as $k=>$v){
$final[$k] = 0;
$pre[$k] = $this->vexs[0];
$weight[$k] = $v;
}
$final[$this->vexs[0]] = 1;
for($i = 0; $i vexs); $i ++){
$key = 0;
$min = $this->infinity;
for($j = 1; $j vexs); $j ++){
$temp = $this->vexs[$j];
if($final[$temp] != 1 && $weight[$temp] $key = $temp;
$min = $weight[$temp];
}
}
$final[$key] = 1;
for($j = 0; $j vexs); $j ++){
$temp = $this->vexs[$j];
if($final[$temp] != 1 && ($min + $this->arc[$key][$temp]) $pre[$temp] = $key;
$weight[$temp] = $min + $this->arc[$key][$temp];
}
}
}
return $pre;
}
//kruscal算法
private function kruscal(){
$this->krus = array();
foreach($this->vexs as $value){
$krus[$value] = 0;
}
foreach($this->arc as $key=>$value){
$begin = $this->findroot($key);
foreach($value as $k=>$v){
$end = $this->findroot($k); 本文链接http://www.cxybl.com/html/wlbc/Php/20120607/28507.html



Related labels:
source:php.cn
Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Popular Recommendations
Popular Tutorials
More>
Latest Downloads
More>
Web Effects
Website Source Code
Website Materials
Front End Template