jQuery Performance Optimization Guide (2)_jquery
例如,你想动态的创建一组列表元素,千万不要这样做,如下所示:
var top_100_list = [...], // 假设这里是100个独一无二的字符串$mylist = $("#mylist"); // jQuery 选择到元素
for (var i=0, l=top_100_list.length; i $mylist.append("" + top_100_list[i] + " ");}我们应该将整套元素字符串在插入进dom中之前先全部创建好,如下所示:
var top_100_list = [...],$mylist = $("#mylist"), top_100_li = ""; // 这个变量将用来存储我们的列表元素for (var i=0, l=top_100_list.length; i top_100_li += "" + top_100_list[i] + " ";}$mylist.html(top_100_li);注:记得以前还看过一朋友写过这样的代码:for (i = 0; i < 1000; i++) {
var $myList = $('#myList');
$myList.append('This is list item ' + i);
}
呵呵,你应该已经看出问题所在了。既然把#mylist循环获取了1000次!!!
5,冒泡除非在特殊情况下, 否则每一个js事件(例如:click, mouseover等.)都会冒泡到父级节点。
当我们需要给多个元素调用同个函数时这点会很有用。代替这种效率很差的多元素事件监听的方法就是, 你只需向它们的父节点绑定一次。
比如, 我们要为一个拥有很多输入框的表单绑定这样的行为: 当输入框被选中时为它添加一个class
传统的做法是,直接选中input,然后绑定focus等,如下所示:
$("#entryform input").bind("focus", function(){$(this).addClass("selected");}).bind("blur", function(){$(this).removeClass("selected");});当然上面代码能帮我们完成相应的任务,但如果你要寻求更高效的方法,请使用如下代码:
$("#entryform").bind("focus", function(e){var $cell = $(e.target); // e.target 捕捉到触发的目标元素$cell.addClass("selected");}).bind("blur", function(e){var $cell = $(e.target);$cell.removeClass("selected");});通过在父级监听获取焦点和失去焦点的事件,对目标元素进行操作。
在上面代码中,父级元素扮演了一个调度员的角色, 它可以基于目标元素绑定事件。
如果你发现你给很多元素绑定了同一个事件监听, 那么现在的你肯定知道哪里做错了。同理,在Table操作时,我们也可以使用这种方式加以改进代码:普通的方式:
改进方式:$('#myTable td').click(function(){$(this).css('background', 'red');});假设有100个td,在使用普通的方式的时候,你绑定了100个事件。$('#myTable').click(function(e) {
var $clicked = $(e.target);
$clicked.css('background', 'red');
});
在改进方式中,你只为一个元素绑定了1个事件,至于是100个事件的效率高,还是1个事件的效率高,相信你也能自行分辨了。
6,推迟到 $(window).loadjQuery는 개발자에게 매우 매력적인 기능을 제공합니다. $(document).ready 아래에 무엇이든 걸 수 있습니다.
$(document).rady는 실제로 유용하지만 다른 요소를 다운로드하기 전에 페이지가 렌더링될 때 실행될 수 있습니다.
페이지가 항상 로드되는 경우 $(document).ready 함수로 인해 발생했을 가능성이 높습니다.jQuery 함수를 $(window).load 이벤트에 바인딩하면 페이지가 로드될 때 CPU 사용량을 줄일 수 있습니다.
모든 HTML($(창).load(함수(){// 페이지가 완전히 로드된 후 초기화되는 jQuery 함수});
드래그 앤 드롭, 시각 효과 및 애니메이션, 숨겨진 이미지 미리 로드 등과 같은 일부 특수 효과 기능이 이 기술에 적합합니다.
7, JavaScript 압축JavaScript 파일을 압축하고 최소화하세요.온라인 압축 주소: http://dean.edwards.name/packer/
압축하기 전에 코드가 표준화되었는지 확인하세요. 그렇지 않으면 실패할 수 있습니다. Js 오류가 발생합니다.이걸로 jQuery 성능 최적화 가이드(2)를 마치고, 가이드(3)를 진행 중입니다....여러분도 자신만의 아이디어가 있다고 생각합니다. 공유해 주세요. 이메일: cssrain@gmail.com중국어 번역: http://rlog.cn/350 & http://cssrain.cn

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

In order to improve the performance of Go applications, we can take the following optimization measures: Caching: Use caching to reduce the number of accesses to the underlying storage and improve performance. Concurrency: Use goroutines and channels to execute lengthy tasks in parallel. Memory Management: Manually manage memory (using the unsafe package) to further optimize performance. To scale out an application we can implement the following techniques: Horizontal Scaling (Horizontal Scaling): Deploying application instances on multiple servers or nodes. Load balancing: Use a load balancer to distribute requests to multiple application instances. Data sharding: Distribute large data sets across multiple databases or storage nodes to improve query performance and scalability.

By building mathematical models, conducting simulations and optimizing parameters, C++ can significantly improve rocket engine performance: Build a mathematical model of a rocket engine and describe its behavior. Simulate engine performance and calculate key parameters such as thrust and specific impulse. Identify key parameters and search for optimal values using optimization algorithms such as genetic algorithms. Engine performance is recalculated based on optimized parameters to improve its overall efficiency.

C++ performance optimization involves a variety of techniques, including: 1. Avoiding dynamic allocation; 2. Using compiler optimization flags; 3. Selecting optimized data structures; 4. Application caching; 5. Parallel programming. The optimization practical case shows how to apply these techniques when finding the longest ascending subsequence in an integer array, improving the algorithm efficiency from O(n^2) to O(nlogn).

The performance of Java frameworks can be improved by implementing caching mechanisms, parallel processing, database optimization, and reducing memory consumption. Caching mechanism: Reduce the number of database or API requests and improve performance. Parallel processing: Utilize multi-core CPUs to execute tasks simultaneously to improve throughput. Database optimization: optimize queries, use indexes, configure connection pools, and improve database performance. Reduce memory consumption: Use lightweight frameworks, avoid leaks, and use analysis tools to reduce memory consumption.

Performance optimization techniques in C++ include: Profiling to identify bottlenecks and improve array layout performance. Memory management uses smart pointers and memory pools to improve allocation and release efficiency. Concurrency leverages multi-threading and atomic operations to increase throughput of large applications. Data locality optimizes storage layout and access patterns and enhances data cache access speed. Code generation and compiler optimization applies compiler optimization techniques, such as inlining and loop unrolling, to generate optimized code for specific platforms and algorithms.

Profiling in Java is used to determine the time and resource consumption in application execution. Implement profiling using JavaVisualVM: Connect to the JVM to enable profiling, set the sampling interval, run the application, stop profiling, and the analysis results display a tree view of the execution time. Methods to optimize performance include: identifying hotspot reduction methods and calling optimization algorithms

Performance optimization for Java microservices architecture includes the following techniques: Use JVM tuning tools to identify and adjust performance bottlenecks. Optimize the garbage collector and select and configure a GC strategy that matches your application's needs. Use a caching service such as Memcached or Redis to improve response times and reduce database load. Employ asynchronous programming to improve concurrency and responsiveness. Split microservices, breaking large monolithic applications into smaller services to improve scalability and performance.

Program performance optimization methods include: Algorithm optimization: Choose an algorithm with lower time complexity and reduce loops and conditional statements. Data structure selection: Select appropriate data structures based on data access patterns, such as lookup trees and hash tables. Memory optimization: avoid creating unnecessary objects, release memory that is no longer used, and use memory pool technology. Thread optimization: identify tasks that can be parallelized and optimize the thread synchronization mechanism. Database optimization: Create indexes to speed up data retrieval, optimize query statements, and use cache or NoSQL databases to improve performance.
