C. Little Elephant and LCM
time limit per test
4 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output
The Little Elephant loves the LCM (least common multiple) operation of a non-empty set of positive integers. The result of the LCM operation of k positive integers x1,?x2,?...,?xk is the minimum positive integer that is divisible by each of numbers xi.
Let's assume that there is a sequence of integers b1,?b2,?...,?bn. Let's denote their LCMs as lcm(b1,?b2,?...,?bn) and the maximum of them as max(b1,?b2,?...,?bn). The Little Elephant considers a sequence b good, if lcm(b1,?b2,?...,?bn)?=?max(b1,?b2,?...,?bn).
The Little Elephant has a sequence of integers a1,?a2,?...,?an. Help him find the number of good sequences of integers b1,?b2,?...,?bn, such that for all i (1?≤?i?≤?n) the following condition fulfills: 1?≤?bi?≤?ai. As the answer can be rather large, print the remainder from dividing it by 1000000007 (109? ?7).
Input
The first line contains a single positive integer n (1?≤?n?≤?105) ? the number of integers in the sequence a. The second line contains nspace-separated integers a1,?a2,?...,?an (1?≤?ai?≤?105) ? sequence a.
Output
In the single line print a single integer ? the answer to the problem modulo 1000000007 (109? ?7).
Sample test(s)
input
41 4 3 2
output
15
input
26 3
output
13
题意:
给你一个a序列,找出一个b序列,1?≤?bi?≤?ai,使得max(bi)=lcm(bi),问这样的bi序列有多少个。
思路:
先对a排序,枚举i=max(bi),对i因式分解,那么大于等于i的部分很好处理,直接pow_mod()相减,小于i的部分就任意取一个约束就够了。
代码:
<pre name="code" class="n">#include <iostream>#include<cstring>#include<cstdio>#include<string>#include<vector>#include<algorithm>#define INF 0x3f3f3f3f#define maxn 100005#define mod 1000000007typedef long long ll;using namespace std;int n;int a[maxn];ll pow_mod(ll x,ll n){ ll res = 1; while(n) { if(n&1) res = res * x %mod; x = x * x %mod; n >>= 1; } return res;}void solve(){ int i,j; ll ans=0,res; sort(a+1,a+n+1); for(i=1;i<=a[n];i++) // 枚举答案 { vector<int>fac; for(j=1;j*j<=i;j++) // factor { if(i%j==0) { fac.push_back(j); if(j*j!=i) fac.push_back(i/j); } } sort(fac.begin(),fac.end()); int pos,pre=1; res=1; for(j=1;j<fac.size();j++) { pos=lower_bound(a+1,a+n+1,fac[j])-a; res*=pow_mod(j,pos-pre); res%=mod; pre=pos; } ans+=res*((pow_mod(j,n-pre+1)-pow_mod(j-1,n-pre+1)+mod)%mod); ans%=mod; } printf("%I64d\n",ans);}int main(){ int i,j; while(~scanf("%d",&n)) { for(i=1;i<=n;i++) { scanf("%d",&a[i]); } solve(); } return 0;}