Home Backend Development Python Tutorial An in-depth analysis of the usage of super keyword in Python programming

An in-depth analysis of the usage of super keyword in Python programming

Jul 06, 2016 pm 01:29 PM
python super

The official document does not say much about the definition of super. It roughly means that it returns a proxy object so that you can call some inherited methods. The search mechanism follows the mro rules. The most commonly used situation is as shown in the following example:

class C(B):
  def method(self, arg):
    super(C, self).method(arg)
Copy after login

Subclass C rewrites the method with the same name in parent class B. In the overwritten implementation, the method with the same name of the parent class is called through the proxy object instantiated by super.

The initial method signature of the super class is as follows:

def __init__(self, type1, type2=None): # known special case of super.__init__
    """
    super(type, obj) -> bound super object; requires isinstance(obj, type)
    super(type) -> unbound super object
    super(type, type2) -> bound super object; requires issubclass(type2, type)
    Typical use to call a cooperative superclass method:
Copy after login

Except for self, it accepts one or two parameters. As stated in the annotation, when two parameters are accepted, a bound super instance is returned. When the second parameter is omitted, an unbound super object is returned. .

Under normal circumstances, when calling an inherited class method or static method, there is no need to bind a specific instance. At this time, using super(type, type2).some_method can achieve the purpose. Of course, super(type, obj) is It can also be used in this case. The super object has a custom implemented getattribute method that can also be processed. However, the latter is generally used to call instance methods, so that the corresponding instance can be passed in when searching for a method, thereby obtaining the bound instance method:

class A(object):
  def __init__(self):
    pass

  @classmethod
  def klass_meth(cls):
    pass

  @staticmethod
  def static_meth():
    pass

  def test(self):
    pass

class B(A):
  pass

>>> b = B()
>>> super(B, b).test
<bound method B.test of <__main__.B object at 0x02DA3570>>
>>> super(B, b).klass_meth
<bound method type.klass_meth of <class '__main__.B'>>
>>> super(B, b).static_meth
<function static_meth at 0x02D9CC70>
>>> super(B, B).test
<unbound method B.test>
>>> super(B, B).klass_meth
<bound method type.klass_meth of <class '__main__.B'>>
>>> super(B,B).satic_meth
>>> super(B,B).static_meth
<function static_meth at 0x02D9CC70>

Copy after login

When initializing the super object, the second parameter passed is actually the bound object. The first parameter can be roughly understood as the starting point of the mark search, such as the situation in the above example: super(B, b ).test will find the method test in the classes listed in B.__mro__ except B itself. Because the methods are non-data descriptors, the custom getattribute of the super object will actually be converted into A.__dict[' test'].__get__(b, B).

Super is used in many places. In addition to making the program more dynamic without having to hardcode the specified type, there are other specific places where it must be used, such as using super in metaclasses to find new in baseclass to generate custom type templates; in When customizing getattribute, it is used to prevent infinite loops, etc.

Regarding super, it is recommended that readers understand it together with python descriptors, because super implements the descriptor protocol and is a non-data descriptor, which can help everyone better understand the use and working principle of super.

At the same time, there are the following 4 points worthy of your attention:
1. In single inheritance, the functions implemented by super() and __init__() are similar

class Base(object):
  def __init__(self):
    print 'Base create'

class childA(Base):
  def __init__(self):
    print 'creat A ',
    Base.__init__(self)


class childB(Base):
  def __init__(self):
    print 'creat B ',
    super(childB, self).__init__()

base = Base()

a = childA()
b = childB()

Copy after login

Output result:

Base create
creat A Base create
creat B Base create
Copy after login


There is no need to explicitly reference the base class when using super() inheritance.

2. super() can only be used in new-style classes

Change the base class to an old-style class, that is, do not inherit any base class

class Base():
  def __init__(self):
    print 'Base create'
Copy after login

When executed, an error will be reported when initializing b:

  super(childB, self).__init__()
TypeError: must be type, not classobj
Copy after login

3. super is not the parent class, but the next class in the inheritance sequence

In multiple inheritance, the inheritance order is involved. super() is equivalent to returning the next class in the inheritance order, not the parent class, similar to this function:

def super(class_name, self):
  mro = self.__class__.mro()
  return mro[mro.index(class_name) + 1]
Copy after login

mro() is used to obtain the inheritance order of classes.

For example:

class Base(object):
  def __init__(self):
    print 'Base create'

class childA(Base):
  def __init__(self):
    print 'enter A '
    # Base.__init__(self)
    super(childA, self).__init__()
    print 'leave A'


class childB(Base):
  def __init__(self):
    print 'enter B '
    # Base.__init__(self)
    super(childB, self).__init__()
    print 'leave B'

class childC(childA, childB):
  pass

c = childC()
print c.__class__.__mro__

Copy after login

The input results are as follows:

enter A 
enter B 
Base create
leave B
leave A
(<class '__main__.childC'>, <class '__main__.childA'>, <class '__main__.childB'>, <class '__main__.Base'>, <type 'object'>)
Copy after login

supder is not related to the parent class, so the execution order is A —> B—>—>Base

The execution process is equivalent to: when initializing childC(), it will first call super(childA, self).__init__() in the constructor of childA, super(childA, self) returns the inheritance order of the current class after childA A class childB; then execute childB().__init()__, and continue in this order.

In multiple inheritance, if you replace super(childA, self).__init__() in childA() with Base.__init__(self), during execution, after inheriting childA, it will jump directly to the Base class. And childB is skipped:

enter A 
Base create
leave A
(<class '__main__.childC'>, <class '__main__.childA'>, <class '__main__.childB'>, <class '__main__.Base'>, <type 'object'>)
Copy after login

As can be seen from the super() method, the first parameter of super() can be the name of any class in the inheritance chain,

If it is itself, it will inherit the next class in turn;

If it is the previous class in the inheritance chain, it will recurse infinitely;

If it is a class later in the inheritance chain, the class between the inheritance chain summary itself and the incoming class will be ignored;

For example, if you change super in childA() to: super(childC, self).__init__(), the program will recurse infinitely.

Such as:

 File "C:/Users/Administrator/Desktop/crawler/learn.py", line 10, in __init__
  super(childC, self).__init__()
 File "C:/Users/Administrator/Desktop/crawler/learn.py", line 10, in __init__
  super(childC, self).__init__()
 File "C:/Users/Administrator/Desktop/crawler/learn.py", line 10, in __init__
  super(childC, self).__init__()
 File "C:/Users/Administrator/Desktop/crawler/learn.py", line 10, in __init__
  super(childC, self).__init__()
 File "C:/Users/Administrator/Desktop/crawler/learn.py", line 10, in __init__
  super(childC, self).__init__()
 File "C:/Users/Administrator/Desktop/crawler/learn.py", line 10, in __init__
  super(childC, self).__init__()
 File "C:/Users/Administrator/Desktop/crawler/learn.py", line 10, in __init__
  super(childC, self).__init__()
 File "C:/Users/Administrator/Desktop/crawler/learn.py", line 10, in __init__
  super(childC, self).__init__()
 File "C:/Users/Administrator/Desktop/crawler/learn.py", line 10, in __init__
  super(childC, self).__init__()
 File "C:/Users/Administrator/Desktop/crawler/learn.py", line 10, in __init__
  super(childC, self).__init__()
 File "C:/Users/Administrator/Desktop/crawler/learn.py", line 10, in __init__
  super(childC, self).__init__()
 File "C:/Users/Administrator/Desktop/crawler/learn.py", line 10, in __init__
  super(childC, self).__init__()
 File "C:/Users/Administrator/Desktop/crawler/learn.py", line 10, in __init__
  super(childC, self).__init__()
RuntimeError: maximum recursion depth exceeded while calling a Python object
Copy after login

4. super() can avoid repeated calls

If childA is based on Base, childB inherits childA and Base, and if childB needs to call the __init__() method of Base, it will cause __init__() to be executed twice:

class Base(object):
  def __init__(self):
    print 'Base create'

class childA(Base):
  def __init__(self):
    print 'enter A '
    Base.__init__(self)
    print 'leave A'


class childB(childA, Base):
  def __init__(self):
    childA.__init__(self)
    Base.__init__(self)

b = childB()
  Base的__init__()方法被执行了两次

enter A 
Base create
leave A
Base create
使用super()是可避免重复调用

class Base(object):
  def __init__(self):
    print 'Base create'

class childA(Base):
  def __init__(self):
    print 'enter A '
    super(childA, self).__init__()
    print 'leave A'


class childB(childA, Base):
  def __init__(self):
    super(childB, self).__init__()

b = childB()
print b.__class__.mro()

Copy after login

enter A 
Base create
leave A
[<class '__main__.childB'>, <class '__main__.childA'>, <class '__main__.Base'>, <type 'object'>]
Copy after login
Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Repo: How To Revive Teammates
4 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: How To Get Giant Seeds
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

How to download deepseek Xiaomi How to download deepseek Xiaomi Feb 19, 2025 pm 05:27 PM

How to download DeepSeek Xiaomi? Search for "DeepSeek" in the Xiaomi App Store. If it is not found, continue to step 2. Identify your needs (search files, data analysis), and find the corresponding tools (such as file managers, data analysis software) that include DeepSeek functions.

How do you ask him deepseek How do you ask him deepseek Feb 19, 2025 pm 04:42 PM

The key to using DeepSeek effectively is to ask questions clearly: express the questions directly and specifically. Provide specific details and background information. For complex inquiries, multiple angles and refute opinions are included. Focus on specific aspects, such as performance bottlenecks in code. Keep a critical thinking about the answers you get and make judgments based on your expertise.

How to search deepseek How to search deepseek Feb 19, 2025 pm 05:18 PM

Just use the search function that comes with DeepSeek. Its powerful semantic analysis algorithm can accurately understand the search intention and provide relevant information. However, for searches that are unpopular, latest information or problems that need to be considered, it is necessary to adjust keywords or use more specific descriptions, combine them with other real-time information sources, and understand that DeepSeek is just a tool that requires active, clear and refined search strategies.

How to program deepseek How to program deepseek Feb 19, 2025 pm 05:36 PM

DeepSeek is not a programming language, but a deep search concept. Implementing DeepSeek requires selection based on existing languages. For different application scenarios, it is necessary to choose the appropriate language and algorithms, and combine machine learning technology. Code quality, maintainability, and testing are crucial. Only by choosing the right programming language, algorithms and tools according to your needs and writing high-quality code can DeepSeek be successfully implemented.

How to use deepseek to settle accounts How to use deepseek to settle accounts Feb 19, 2025 pm 04:36 PM

Question: Is DeepSeek available for accounting? Answer: No, it is a data mining and analysis tool that can be used to analyze financial data, but it does not have the accounting record and report generation functions of accounting software. Using DeepSeek to analyze financial data requires writing code to process data with knowledge of data structures, algorithms, and DeepSeek APIs to consider potential problems (e.g. programming knowledge, learning curves, data quality)

The Key to Coding: Unlocking the Power of Python for Beginners The Key to Coding: Unlocking the Power of Python for Beginners Oct 11, 2024 pm 12:17 PM

Python is an ideal programming introduction language for beginners through its ease of learning and powerful features. Its basics include: Variables: used to store data (numbers, strings, lists, etc.). Data type: Defines the type of data in the variable (integer, floating point, etc.). Operators: used for mathematical operations and comparisons. Control flow: Control the flow of code execution (conditional statements, loops).

Problem-Solving with Python: Unlock Powerful Solutions as a Beginner Coder Problem-Solving with Python: Unlock Powerful Solutions as a Beginner Coder Oct 11, 2024 pm 08:58 PM

Pythonempowersbeginnersinproblem-solving.Itsuser-friendlysyntax,extensivelibrary,andfeaturessuchasvariables,conditionalstatements,andloopsenableefficientcodedevelopment.Frommanagingdatatocontrollingprogramflowandperformingrepetitivetasks,Pythonprovid

How to access DeepSeekapi - DeepSeekapi access call tutorial How to access DeepSeekapi - DeepSeekapi access call tutorial Mar 12, 2025 pm 12:24 PM

Detailed explanation of DeepSeekAPI access and call: Quick Start Guide This article will guide you in detail how to access and call DeepSeekAPI, helping you easily use powerful AI models. Step 1: Get the API key to access the DeepSeek official website and click on the "Open Platform" in the upper right corner. You will get a certain number of free tokens (used to measure API usage). In the menu on the left, click "APIKeys" and then click "Create APIkey". Name your APIkey (for example, "test") and copy the generated key right away. Be sure to save this key properly, as it will only be displayed once

See all articles