Home > php教程 > php手册 > Python Regular Expressions Guide

Python Regular Expressions Guide

WBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWB
Release: 2016-07-09 09:09:13
Original
875 people have browsed it

This article introduces Python’s support for regular expressions, including the basics of regular expressions and a complete introduction and usage examples of the Python regular expression standard library. The content of this article does not include how to write efficient regular expressions or how to optimize regular expressions. Please check other tutorials for these topics.

Note: This article is based on Python2.4; if you see vocabulary you don’t understand, please remember Baidu, Google or Wiki, whatever.

Respect the author's work, please indicate the author and original address when reprinting>.html

1. Basics of regular expressions

1.1 . Brief introduction

Regular expressions are not part of Python. Regular expressions are a powerful tool for processing strings. They have their own unique syntax and an independent processing engine. They may not be as efficient as str's own method, but they are very powerful. Thanks to this, the syntax of regular expressions is the same in languages ​​that provide regular expressions. The only difference is that different programming language implementations support different numbers of syntaxes; but don’t worry, unsupported syntaxes are usually It is a part that is not commonly used. If you have already used regular expressions in other languages, you only need to take a quick look to get started.

The following figure shows the matching process using regular expressions:
Python Regular Expressions Guide

The general matching process of regular expressions is: take out the expression and the characters in the text in turn Comparison, if every character can be matched, the match is successful; if there is an unsuccessful match, the match fails. If there are quantifiers or boundaries in the expression, the process is slightly different, but it is easy to understand. You can understand it by looking at the example in the picture below and using it a few times yourself.

The following figure lists the regular expression metacharacters and syntax supported by Python:
Python Regular Expressions Guide

1.2. Greedy mode and non-greedy mode of quantifiers

Regular expressions are commonly used to find matching strings in text. Quantifiers in Python are greedy by default (or non-greedy by default in a few languages), always trying to match as many characters as possible; non-greedy, on the contrary, always try to match as few characters as possible. For example: if the regular expression "ab*" is used to find "abbbc", "abbb" will be found. And if you use the non-greedy quantifier "ab*?", you will find "a".

1.3. Backslash troubles

Like most programming languages, "" is used as an escape character in regular expressions, which may cause backslash troubles. If you need to match the character "" in the text, then the regular expression expressed in the programming language will need 4 backslashes "\\": the first two and the last two are used to escape into in the programming language Backslash, converted into two backslashes and then escaped into one backslash in the regular expression. The native strings in Python solve this problem very well. The regular expression in this example can be represented by r"\". Likewise, "\d" matching a number can be written as r"d". With native strings, you no longer have to worry about missing backslashes, and the expressions you write are more intuitive.

1.4. Matching patterns

Regular expressions provide some available matching patterns, such as ignoring case, multi-line matching, etc. This part will be found in the factory method re.compile of the Pattern class (pattern[, flags]) are introduced together.

2. re module

2.1. Start using re

Python provides support for regular expressions through the re module. The general steps for using re are to first compile the string form of the regular expression into a Pattern instance, then use the Pattern instance to process the text and obtain the matching result (a Match instance), and finally use the Match instance to obtain information and perform other operations.

# encoding: UTF-8
import re

# 将正则表达式编译成Pattern对象
pattern = re.compile(r'hello')

# 使用Pattern匹配文本,获得匹配结果,无法匹配时将返回None
match = pattern.match('hello world!')

if match:
    # 使用Match获得分组信息
    print match.group()

### 输出 ###
# hello
Copy after login

re.compile(strPattern[, flag]):

This method is the factory method of the Pattern class, used to compile regular expressions in the form of strings into Pattern objects. The second parameter flag is the matching mode. The value can use the bitwise OR operator '|' to indicate that it is effective at the same time, such as re.I | re.M. In addition, you can also specify the pattern in the regex string. For example, re.compile('pattern', re.I | re.M) is equivalent to re.compile('(?im)pattern').
Optional values ​​are:

  • re.I(re.IGNORECASE): 忽略大小写(括号内是完整写法,下同)
  • M(MULTILINE): 多行模式,改变'^'和'$'的行为(参见上图)
  • S(DOTALL): 点任意匹配模式,改变'.'的行为
  • L(LOCALE): 使预定字符类 \w \W \b \B \s \S 取决于当前区域设定
  • U(UNICODE): 使预定字符类 \w \W \b \B \s \S \d \D 取决于unicode定义的字符属性
  • X(VERBOSE): 详细模式。这个模式下正则表达式可以是多行,忽略空白字符,并可以加入注释。以下两个正则表达式是等价的:
a = re.compile(r"""\d +  # the integral part
                   \.    # the decimal point
                   \d *  # some fractional digits""", re.X)
b = re.compile(r"\d+\.\d*")
Copy after login

re提供了众多模块方法用于完成正则表达式的功能。这些方法可以使用Pattern实例的相应方法替代,唯一的好处是少写一行re.compile()代码,但同时也无法复用编译后的Pattern对象。这些方法将在Pattern类的实例方法部分一起介绍。如上面这个例子可以简写为:

m = re.match(r'hello', 'hello world!')
print m.group()
Copy after login

re模块还提供了一个方法escape(string),用于将string中的正则表达式元字符如*/+/?等之前加上转义符再返回,在需要大量匹配元字符时有那么一点用。

2.2. Match

Match对象是一次匹配的结果,包含了很多关于此次匹配的信息,可以使用Match提供的可读属性或方法来获取这些信息。

属性:

  1. string: 匹配时使用的文本。
  2. re: 匹配时使用的Pattern对象。
  3. pos: 文本中正则表达式开始搜索的索引。值与Pattern.match()和Pattern.seach()方法的同名参数相同。
  4. endpos: 文本中正则表达式结束搜索的索引。值与Pattern.match()和Pattern.seach()方法的同名参数相同。
  5. lastindex: 最后一个被捕获的分组在文本中的索引。如果没有被捕获的分组,将为None。
  6. lastgroup: 最后一个被捕获的分组的别名。如果这个分组没有别名或者没有被捕获的分组,将为None。

方法:

  1. group([group1, …]):
    获得一个或多个分组截获的字符串;指定多个参数时将以元组形式返回。group1可以使用编号也可以使用别名;编号0代表整个匹配的子串;不填写参数时,返回group(0);没有截获字符串的组返回None;截获了多次的组返回最后一次截获的子串。
  2. groups([default]):
    以元组形式返回全部分组截获的字符串。相当于调用group(1,2,…last)。default表示没有截获字符串的组以这个值替代,默认为None。
  3. groupdict([default]):
    返回以有别名的组的别名为键、以该组截获的子串为值的字典,没有别名的组不包含在内。default含义同上。
  4. start([group]):
    返回指定的组截获的子串在string中的起始索引(子串第一个字符的索引)。group默认值为0。
  5. end([group]):
    返回指定的组截获的子串在string中的结束索引(子串最后一个字符的索引+1)。group默认值为0。
  6. span([group]):
    返回(start(group), end(group))。
  7. expand(template):
    将匹配到的分组代入template中然后返回。template中可以使用\id或\g、\g引用分组,但不能使用编号0。\id与\g是等价的;但\10将被认为是第10个分组,如果你想表达\1之后是字符'0',只能使用\g<1>0。
import re
m = re.match(r'(\w+) (\w+)(?P<sign>.*)', 'hello world!')

print "m.string:", m.string
print "m.re:", m.re
print "m.pos:", m.pos
print "m.endpos:", m.endpos
print "m.lastindex:", m.lastindex
print "m.lastgroup:", m.lastgroup

print "m.group(1,2):", m.group(1, 2)
print "m.groups():", m.groups()
print "m.groupdict():", m.groupdict()
print "m.start(2):", m.start(2)
print "m.end(2):", m.end(2)
print "m.span(2):", m.span(2)
print r"m.expand(r'\2 \1\3'):", m.expand(r'\2 \1\3')

### output ###
# m.string: hello world!
# m.re: <_sre.SRE_Pattern object at 0x016E1A38>
# m.pos: 0
# m.endpos: 12
# m.lastindex: 3
# m.lastgroup: sign
# m.group(1,2): ('hello', 'world')
# m.groups(): ('hello', 'world', '!')
# m.groupdict(): {'sign': '!'}
# m.start(2): 6
# m.end(2): 11
# m.span(2): (6, 11)
# m.expand(r'\2 \1\3'): world hello!
Copy after login

2.3. Pattern

Pattern对象是一个编译好的正则表达式,通过Pattern提供的一系列方法可以对文本进行匹配查找。

Pattern不能直接实例化,必须使用re.compile()进行构造。

Pattern提供了几个可读属性用于获取表达式的相关信息:

  1. pattern: 编译时用的表达式字符串。
  2. flags: 编译时用的匹配模式。数字形式。
  3. groups: 表达式中分组的数量。
  4. groupindex: 以表达式中有别名的组的别名为键、以该组对应的编号为值的字典,没有别名的组不包含在内。
import re
p = re.compile(r'(\w+) (\w+)(?P<sign>.*)', re.DOTALL)

print "p.pattern:", p.pattern
print "p.flags:", p.flags
print "p.groups:", p.groups
print "p.groupindex:", p.groupindex

### output ###
# p.pattern: (\w+) (\w+)(?P<sign>.*)
# p.flags: 16
# p.groups: 3
# p.groupindex: {'sign': 3}
Copy after login

实例方法[ | re模块方法]:

  1. match(string[, pos[, endpos]]) | re.match(pattern, string[, flags]):
    这个方法将从string的pos下标处起尝试匹配pattern;如果pattern结束时仍可匹配,则返回一个Match对象;如果匹配过程中pattern无法匹配,或者匹配未结束就已到达endpos,则返回None。
    pos和endpos的默认值分别为0和len(string);re.match()无法指定这两个参数,参数flags用于编译pattern时指定匹配模式。
    注意:这个方法并不是完全匹配。当pattern结束时若string还有剩余字符,仍然视为成功。想要完全匹配,可以在表达式末尾加上边界匹配符'$'。
    示例参见2.1小节。
  2. search(string[, pos[, endpos]]) | re.search(pattern, string[, flags]):
    这个方法用于查找字符串中可以匹配成功的子串。从string的pos下标处起尝试匹配pattern,如果pattern结束时仍可匹配,则返回一个Match对象;若无法匹配,则将pos加1后重新尝试匹配;直到pos=endpos时仍无法匹配则返回None。
    pos和endpos的默认值分别为0和len(string));re.search()无法指定这两个参数,参数flags用于编译pattern时指定匹配模式。
    # encoding: UTF-8 
    import re 
    
    # 将正则表达式编译成Pattern对象 
    pattern = re.compile(r'world') 
    
    # 使用search()查找匹配的子串,不存在能匹配的子串时将返回None 
    # 这个例子中使用match()无法成功匹配 
    match = pattern.search('hello world!') 
    
    if match: 
        # 使用Match获得分组信息 
        print match.group() 
    
    ### 输出 ### 
    # world 
    Copy after login
  3. split(string[, maxsplit]) | re.split(pattern, string[, maxsplit]):
    按照能够匹配的子串将string分割后返回列表。maxsplit用于指定最大分割次数,不指定将全部分割。
    import re
    
    p = re.compile(r'\d+')
    print p.split('one1two2three3four4')
    
    ### output ###
    # ['one', 'two', 'three', 'four', '']
    Copy after login
  4. findall(string[, pos[, endpos]]) | re.findall(pattern, string[, flags]):
    搜索string,以列表形式返回全部能匹配的子串。
    import re
    
    p = re.compile(r'\d+')
    print p.findall('one1two2three3four4')
    
    ### output ###
    # ['1', '2', '3', '4']
    Copy after login
  5. finditer(string[, pos[, endpos]]) | re.finditer(pattern, string[, flags]):
    搜索string,返回一个顺序访问每一个匹配结果(Match对象)的迭代器。
    import re
    
    p = re.compile(r'\d+')
    for m in p.finditer('one1two2three3four4'):
        print m.group(),
    
    ### output ###
    # 1 2 3 4
    Copy after login
  6. sub(repl, string[, count]) | re.sub(pattern, repl, string[, count]):
    使用repl替换string中每一个匹配的子串后返回替换后的字符串。
    当repl是一个字符串时,可以使用\id或\g、\g引用分组,但不能使用编号0。
    当repl是一个方法时,这个方法应当只接受一个参数(Match对象),并返回一个字符串用于替换(返回的字符串中不能再引用分组)。
    count用于指定最多替换次数,不指定时全部替换。
    import re
    
    p = re.compile(r'(\w+) (\w+)')
    s = 'i say, hello world!'
    
    print p.sub(r'\2 \1', s)
    
    def func(m):
        return m.group(1).title() + ' ' + m.group(2).title()
    
    print p.sub(func, s)
    
    ### output ###
    # say i, world hello!
    # I Say, Hello World!
    Copy after login
  7. subn(repl, string[, count]) |re.sub(pattern, repl, string[, count]):
    返回 (sub(repl, string[, count]), 替换次数)。
    import re
    
    p = re.compile(r'(\w+) (\w+)')
    s = 'i say, hello world!'
    
    print p.subn(r'\2 \1', s)
    
    def func(m):
        return m.group(1).title() + ' ' + m.group(2).title()
    
    print p.subn(func, s)
    
    ### output ###
    # ('say i, world hello!', 2)
    # ('I Say, Hello World!', 2)
    Copy after login

    以上就是Python对于正则表达式的支持。熟练掌握正则表达式是每一个程序员必须具备的技能,这年头没有不与字符串打交道的程序了。笔者也处于初级阶段,与君共勉,^_^

    另外,图中的特殊构造部分没有举出例子,用到这些的正则表达式是具有一定难度的。有兴趣可以思考一下,如何匹配不是以abc开头的单词,^_^

    全文结束

source:php.cn
Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Popular Recommendations
Popular Tutorials
More>
Latest Downloads
More>
Web Effects
Website Source Code
Website Materials
Front End Template