Home > Backend Development > PHP Tutorial > PHP kernel exploration: Principle of hash table collision attack, kernel_PHP tutorial

PHP kernel exploration: Principle of hash table collision attack, kernel_PHP tutorial

WBOY
Release: 2016-07-13 09:45:20
Original
991 people have browsed it

PHP Kernel Exploration: Principle of Hash Table Collision Attack, Kernel

The following uses pictures and texts to show you PHP Kernel Exploration: Principle of Hash Table Collision Attack.

Recently, the topic of Hashtable collisions as DOS attack has been constantly brought up, and various languages ​​have been affected. This article combines the PHP kernel source code to talk about the principle and implementation of this attack.

Basic principles of hash table collision attack

Hash table is a data structure with extremely high search efficiency. Many languages ​​​​implement hash tables internally. The hash table in PHP is an extremely important data structure. It is not only used to represent the Array data type, but also used to store context information inside the Zend virtual machine (the variables and functions of the execution context are all stored using the hash table structure) .

Ideally, the time complexity of hash table insertion and search operations is O(1). Any data item can calculate a hash value (key) in a time independent of the length of the hash table. Then a bucket (the term bucket means a position in the hash table) is located in constant time. Of course, this is an ideal situation, because the length of any hash table is limited, so there must be a situation where different data items have the same hash value. At this time, different data items are assigned to the same bucket, which is called a collision. (collision). The implementation of the hash table needs to solve the collision problem. There are generally two ideas for solving the collision. The first is to assign the collided data to other buckets according to a certain principle, such as linear detection - if the data collides during insertion, Then search the buckets behind this bucket sequentially and put them into the first unused bucket; the second strategy is that each bucket is not a location that can only hold a single data item, but a location that can hold multiple data. Data structure (such as a linked list or a red-black tree), all collision data is organized in the form of some data structure.

No matter which collision resolution strategy is used, the time complexity of the insertion and search operations is no longer O(1). Take search as an example. You cannot end by locating the bucket by key. You must also compare whether the original key (that is, the key before hashing) is equal. If not, you must use the same algorithm as the insertion to continue searching until it is found. The matching value or confirmation data is not in the hash table.

PHP uses a singly linked list to store collision data, so in fact the average search complexity of the PHP hash table is O(L), where L is the average length of the bucket linked list; and the worst complexity is O(N) , at this time all the data collides, and the hash table degenerates into a singly linked list. The following figure is a schematic diagram of a normal hash table and a degenerate hash table in PHP.

The hash table collision attack is to carefully construct the data so that all the data collides, artificially turning the hash table into a degenerated singly linked list. At this time, the time of various operations on the hash table is increased by an order of magnitude, so It will consume a lot of CPU resources, causing the system to be unable to respond to requests quickly, thereby achieving the purpose of a denial of service attack (DoS).

As you can see, the premise for a hash collision attack is that the hash algorithm is particularly easy to find collisions. If it is MD5 or SHA1, it is basically out of the question. Fortunately (or unfortunately) most programming languages The hashing algorithms used are very simple (this is for efficiency reasons), so the attack data can be constructed effortlessly. The next section will analyze Zend related kernel code to find out how to attack hash table collision and attack PHP.
Internal implementation data structure of Zend hash table
PHP uses a structure called Backet to represent buckets, and all buckets with the same hash value are organized into a singly linked list. The hash table is represented by the HashTable structure. The relevant source code is under zend/Zend_hash.h:

typedef struct bucket {
 ulong h;						/* Used for numeric indexing */
 uint nKeyLength;
 void *pData;
 void *pDataPtr;
 struct bucket *pListNext;
 struct bucket *pListLast;
 struct bucket *pNext;
 struct bucket *pLast;
 char arKey[1]; /* Must be last element */
} Bucket;
typedef struct _hashtable {
 uint nTableSize;
 uint nTableMask;
 uint nNumOfElements;
 ulong nNextFreeElement;
 Bucket *pInternalPointer; /* Used for element traversal */
 Bucket *pListHead;
 Bucket *pListTail;
 Bucket **arBuckets;
 dtor_func_t pDestructor;
 zend_bool persistent;
 unsigned char nApplyCount;
 zend_bool bApplyProtection;
#ifZEND_DEBUG
 int inconsistent;
#endif
} HashTable;
Copy after login

The field name clearly indicates its purpose, so no further explanation is required. Focus on the following fields: "h" in Bucket is used to store the original key; nTableMask in HashTable is a mask, generally set to nTableSize - 1, which is closely related to the hash algorithm. When discussing the hash algorithm later Will elaborate; arBuckets points to an array of pointers, where each element is a pointer to the head of the Bucket list.
Hash Algorithm
The minimum capacity of the PHP hash table is 8 (2^3), the maximum capacity is 0×80000000 (2^31), and is rounded to the integer power of 2 (that is, the length will automatically expand to the integer power of 2, such as 13 The length of the hash table of elements is 16; the length of the hash table of 100 elements is 128). nTableMask is initialized to the length of the hash table (after rounding) minus 1. The specific code is in the _zend_hash_init function of zend/Zend_hash.c. Here, the parts related to this article are intercepted and added with a few comments.

ZEND_API int_zend_hash_init(HashTable *ht, uintnSize, hash_func_t pHashFunction, dtor_func_t pDestructor, zend_bool persistent ZEND_FILE_LINE_DC)
{
 uinti = 3;
 Bucket **tmp;
 SET_INCONSISTENT(HT_OK);
 //长度向2的整数次幂圆整
 if(nSize >= 0x80000000) {
 /* prevent overflow */
 ht->nTableSize = 0x80000000;
 } else{
 while((1U << i) < nSize) {
  i++;
 }
 ht->nTableSize = 1<< i;
 }
 ht->nTableMask = ht->nTableSize - 1;
 /*此处省略若干代码…*/
 returnSUCCESS;
}
Copy after login

It is worth mentioning that PHP’s method of rounding to integer powers of 2 is very clever and can be memorized and used when needed.

Zend HashTable’s hash algorithm is extremely simple:

Copy code The code is as follows:
hash(key)=key&nTableMask

That is, simply perform a bitwise AND between the original key of the data and the nTableMask of the HashTable.

If the original key is a string, first use the Times33 algorithm to convert the string into an integer and then bitwise AND it with nTableMask.

复制代码 代码如下:
hash(strkey)=time33(strkey)&nTableMask

下面是Zend源码中查找哈希表的代码:

ZEND_API int zend_hash_index_find(constHashTable *ht, ulong h, void **pData)
{
 uint nIndex;
 Bucket *p;
 IS_CONSISTENT(ht);
 nIndex = h & ht->nTableMask;
 p = ht->arBuckets[nIndex];
 while(p != NULL) {
 if((p->h == h) && (p->nKeyLength == 0)) {
  *pData = p->pData;
  returnSUCCESS;
 }
 p = p->pNext;
 }
 returnFAILURE;
}
ZEND_API int zend_hash_find(constHashTable *ht, constchar *arKey, uint nKeyLength, void **pData)
{
 ulong h;
 uint nIndex;
 Bucket *p;
 IS_CONSISTENT(ht);
 h = zend_inline_hash_func(arKey, nKeyLength);
 nIndex = h & ht->nTableMask;
 p = ht->arBuckets[nIndex];
 while(p != NULL) {
 if((p->h == h) && (p->nKeyLength == nKeyLength)) {
  if(!memcmp(p->arKey, arKey, nKeyLength)) {
  *pData = p->pData;
  returnSUCCESS;
  }
 }
 p = p->pNext;
 }
 returnFAILURE;
}
Copy after login

其中zend_hash_index_find用于查找整数key的情况,zend_hash_find用于查找字符串key。逻辑基本一致,只是字符串key会通过zend_inline_hash_func转为整数key,zend_inline_hash_func封装了times33算法,具体代码就不贴出了。
攻击 基本攻击
知道了PHP内部哈希表的算法,就可以利用其原理构造用于攻击的数据。一种最简单的方法是利用掩码规律制造碰撞。上文提到Zend HashTable的长度nTableSize会被圆整为2的整数次幂,假设我们构造一个2^16的哈希表,则nTableSize的二进制表示为:1 0000 0000 0000 0000,而nTableMask = nTableSize - 1为:0 1111 1111 1111 1111。接下来,可以以0为初始值,以2^16为步长,制造足够多的数据,可以得到如下推测:

0000 0000 0000 0000 0000 & 0 1111 1111 1111 1111 = 0

0001 0000 0000 0000 0000 & 0 1111 1111 1111 1111 = 0

0010 0000 0000 0000 0000 & 0 1111 1111 1111 1111 = 0

0011 0000 0000 0000 0000 & 0 1111 1111 1111 1111 = 0

0100 0000 0000 0000 0000 & 0 1111 1111 1111 1111 = 0

……

概况来说只要保证后16位均为0,则与掩码位于后得到的哈希值全部碰撞在位置0。

下面是利用这个原理写的一段攻击代码:

<&#63;php
$size= pow(2, 16);
$startTime= microtime(true);
$array= array();
for($key= 0, $maxKey= ($size- 1) * $size; $key<= $maxKey; $key+= $size) {
 $array[$key] = 0;
}
$endTime= microtime(true);
echo $endTime- $startTime, " seconds";
Copy after login

这段代码在我的VPS上(单CPU,512M内存)上用了近88秒才完成,并且在此期间CPU资源几乎被用尽:

而普通的同样大小的哈希表插入仅用时0.036秒:

<&#63;php
$size= pow(2, 16);
$startTime= microtime(true);
$array= array();
for($key= 0, $maxKey= ($size- 1) * $size; $key<= $size; $key+= 1) {
 $array[$key] = 0;
}
$endTime= microtime(true);
echo $endTime- $startTime, " seconds";

Copy after login

可以证明第二段代码插入N个元素的时间在O(N)水平,而第一段攻击代码则需O(N^2)的时间去插入N个元素。

POST攻击

当然,一般情况下很难遇到攻击者可以直接修改PHP代码的情况,但是攻击者仍可以通过一些方法间接构造哈希表来进行攻击。例如PHP会将接收到的HTTP POST请求中的数据构造为$_POST,而这是一个Array,内部就是通过Zend HashTable表示,因此攻击者只要构造一个含有大量碰撞key的post请求,就可以达到攻击的目的。具体做法不再演示。

防护 POST攻击的防护

针对POST方式的哈希碰撞攻击,目前PHP的防护措施是控制POST数据的数量。在>=PHP5.3.9的版本中增加了一个配置项max_input_vars,用于标识一次http请求最大接收的参数个数,默认为1000。因此PHP5.3.x的用户可以通过升级至5.3.9来避免哈希碰撞攻击。5.2.x的用户可以使用这个patch: http://www.laruence.com/2011/12/30/2440.html 。

另外的防护方法是在Web服务器层面进行处理,例如限制http请求body的大小和参数的数量等,这个是现在用的最多的临时处理方案。具体做法与不同Web服务器相关,不再详述。

其它防护

上面的防护方法只是限制POST数据的数量,而不能彻底解决这个问题。例如,如果某个POST字段是一个json数据类型,会被PHP json_decode ,那么只要构造一个超大的json攻击数据照样可以达到攻击目的。理论上,只要PHP代码中某处构造Array的数据依赖于外部输入,则都可能造成这个问题,因此彻底的解决方案要从Zend底层HashTable的实现动手。一般来说有两种方式,一是限制每个桶链表的最长长度;二是使用其它数据结构如 红黑树 取代链表组织碰撞哈希(并不解决哈希碰撞,只是减轻攻击影响,将N个数据的操作时间从O(N^2)降至O(NlogN),代价是普通情况下接近O(1)的操作均变为O(logN))。

目前使用最多的仍然是POST数据攻击,因此建议生产环境的PHP均进行升级或打补丁。至于从数据结构层面修复这个问题,目前还没有任何方面的消息。

以上所述就是本文的全部内容,希望大家喜欢。

www.bkjia.comtruehttp: //www.bkjia.com/PHPjc/1041337.htmlTechArticlePHP kernel exploration: Principle of hash table collision attack, the kernel below shows you PHP kernel exploration through pictures and texts: Principle of hash table collision attack. Recent hash table collision attack (Has...
Related labels:
source:php.cn
Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Popular Tutorials
More>
Latest Downloads
More>
Web Effects
Website Source Code
Website Materials
Front End Template