


Introduction to pipe and queue for python's multiprocessing multi-process communication_PHP tutorial
Introduction to pipe and queue for python's multiprocessing multi-process communication
In the past two days, I have been reviewing the multiprocessing module of Python. I have seen the two IPC methods of pipe and queue. What is IPC about? ipc is the inter-process communication mode. Half of the commonly used ones are socket, rpc, pipe and message queue.
Today I’m going to mess with the pipe and queue again.
The code is as follows | |||||
#coding:utf-8
|
Not only multiprocessing pipes, but also other pipe implementations are just games between two processes. I give it to you and you receive it, or you come and I receive it. Of course, it can also be made into a duplex state.
In the case of queue, more processes can participate. The usage is similar to some other queues.
Take a look at the documentation on the official website:
multiprocessing.Pipe([duplex])
Returns a pair (conn1, conn2) of Connection objects representing the ends of a pipe.
#Two pipe objects. Use these two objects to communicate with each other.
If duplex is True (the default) then the pipe is bidirectional. If duplex is False then the pipe is unidirectional: conn1 can only be used for receiving messages and conn2 can only be used for sending messages.
class multiprocessing.Queue([maxsize])
Returns a process shared queue implemented using a pipe and a few locks/semaphores. When a process first puts an item on the queue a feeder thread is started which transfers objects from a buffer into the pipe.
#Maximum number of queues
The usual Queue.Empty and Queue.Full exceptions from the standard library’s Queue module are raised to signal timeouts.
Queue implements all the methods of Queue.Queue except for task_done() and join().
qsize()
Return the approximate size of the queue. Because of multithreading/multiprocessing semantics, this number is not reliable.
#Queue size
Note that this may raise NotImplementedError on Unix platforms like Mac OS X where sem_getvalue() is not implemented.
empty()
Return True if the queue is empty, False otherwise. Because of multithreading/multiprocessing semantics, this is not reliable.
#Whether it is holed. If it is empty, it returns a True status.
full()
Return True if the queue is full, False otherwise. Because of multithreading/multiprocessing semantics, this is not reliable.
#Whether the queue status is full.
put(obj[, block[, timeout]])
Put obj into the queue. If the optional argument block is True (the default) and timeout is None (the default), block if necessary until a free slot is available. If timeout is a positive number, it blocks at most timeout seconds and raises the Queue.Full exception if no free slot was available within that time. Otherwise (block is False), put an item on the queue if a free slot is immediately available, else raise the Queue.Full exception (timeout is ignored in that case).
#Put it into the queue, you can add a timeout.
put_nowait(obj)
Equivalent to put(obj, False).
#There is no traffic here
get([block[, timeout]])
Remove and return an item from the queue. If optional args block is True (the default) and timeout is None (the default), block if necessary until an item is available. If timeout is a positive number, it blocks at most timeout seconds and raises the Queue.Empty exception if no item was available within that time. Otherwise (block is False), return an item if one is immediately available, else raise the Queue.Empty exception (timeout is ignored in that case).
#Get status
get_nowait()
Equivalent to get(False).
#Get the data in the queue without blocking
Queue has a few additional methods not found in Queue.Queue. These methods are usually unnecessary for most code:
close()
Indicate that no more data will be put on this queue by the current process. The background thread will quit once it has flushed all buffered data to the pipe. This is called automatically when the queue is garbage collected.
#Close, save resources of the current process.
I configured the length of the multiprocessing queue to be 3. Then when I put the fourth one, I will find that one is blocked. It is waiting for someone to get the data and drop one. At that time, it can continue to block. enter. If you use put_nowait(), an error will occur immediately if the queue exceeds the limit.
/System/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/multiprocessing/queues.pyc in put_nowait(self, obj)
/System/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/multiprocessing/queues.pyc in put(self, obj, block, timeout)
Below is a piece of test code. Students can run the demo and get a feel for it.
The code is as follows | |||||
#coding:utf-8
import multiprocessing time.sleep(1) queue = multiprocessing.Queue(3) # input processes
for i in range(10):
process = multiprocessing.Process(target=inputQ,args=(queue,))
process.start()
record1.append(process)
# output processes
for i in range(10):
process = multiprocessing.Process(target=outputQ,args=(queue,lock))
process.start()
record2.append(process) |

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



PHP is suitable for web development and rapid prototyping, and Python is suitable for data science and machine learning. 1.PHP is used for dynamic web development, with simple syntax and suitable for rapid development. 2. Python has concise syntax, is suitable for multiple fields, and has a strong library ecosystem.

PHP is mainly procedural programming, but also supports object-oriented programming (OOP); Python supports a variety of paradigms, including OOP, functional and procedural programming. PHP is suitable for web development, and Python is suitable for a variety of applications such as data analysis and machine learning.

VS Code can run on Windows 8, but the experience may not be great. First make sure the system has been updated to the latest patch, then download the VS Code installation package that matches the system architecture and install it as prompted. After installation, be aware that some extensions may be incompatible with Windows 8 and need to look for alternative extensions or use newer Windows systems in a virtual machine. Install the necessary extensions to check whether they work properly. Although VS Code is feasible on Windows 8, it is recommended to upgrade to a newer Windows system for a better development experience and security.

VS Code extensions pose malicious risks, such as hiding malicious code, exploiting vulnerabilities, and masturbating as legitimate extensions. Methods to identify malicious extensions include: checking publishers, reading comments, checking code, and installing with caution. Security measures also include: security awareness, good habits, regular updates and antivirus software.

In VS Code, you can run the program in the terminal through the following steps: Prepare the code and open the integrated terminal to ensure that the code directory is consistent with the terminal working directory. Select the run command according to the programming language (such as Python's python your_file_name.py) to check whether it runs successfully and resolve errors. Use the debugger to improve debugging efficiency.

VS Code can be used to write Python and provides many features that make it an ideal tool for developing Python applications. It allows users to: install Python extensions to get functions such as code completion, syntax highlighting, and debugging. Use the debugger to track code step by step, find and fix errors. Integrate Git for version control. Use code formatting tools to maintain code consistency. Use the Linting tool to spot potential problems ahead of time.

VS Code is available on Mac. It has powerful extensions, Git integration, terminal and debugger, and also offers a wealth of setup options. However, for particularly large projects or highly professional development, VS Code may have performance or functional limitations.

The key to running Jupyter Notebook in VS Code is to ensure that the Python environment is properly configured, understand that the code execution order is consistent with the cell order, and be aware of large files or external libraries that may affect performance. The code completion and debugging functions provided by VS Code can greatly improve coding efficiency and reduce errors.
