Python code optimization tips
Code Optimization Part 1
Share some tips on code optimization that I have seen recently.
Short-circuit characteristics of if judgment
For and, the conditions that meet the fewest conditions should be placed first, so that when a large number of judgments are made, the conditions that satisfy the fewest conditions will directly cause other subsequent expressions not to be calculated, thus saving time (because False and True or False)
import timeit s1 = """ a = range(2000) [i for i in a if i % 2 ==0 and i > 1900] """ s2 = """ a = range(2000) [i for i in a if i > 1900 and i % 2 ==0] """ print timeit.timeit(stmt=s1, number=1000) print timeit.timeit(stmt=s2, number=1000)
The operation results are as follows:
➜ python test6.py 0.248532056808 0.195827960968 # 可以看到s2 表达式计算更快, 因为大部分情况都不满足 i>1900, 所以这些情况下, i % 2 == 0 也没有计算,从而节约了时间
Similarly for or, put the one that meets the most conditions first.
import timeit s1 = """ a = range(2000) [i for i in a if 10 < i <20 or 1000 < i < 2000] """ s2 = """ a = range(2000) [i for i in a if 1000 < i < 2000 or 10 < i <20] """ print timeit.timeit(stmt=s1, number=1000) print timeit.timeit(stmt=s2, number=1000)
Run results:
0.253124952316 0.202992200851
join merge strings
join merge strings faster than looping + to merge.
import timeit s1 = """ a = [str(x) for x in range(2000)] s = '' for i in a: s += i """ s2 = """ a = [str(x) for x in range(2000)] s = ''.join(a) """ print timeit.timeit(stmt=s1, number=1000) print timeit.timeit(stmt=s2, number=1000)
The running results are as follows:
python test6.py 0.558945894241 0.422435998917
while 1 and while True
In python2.x, True and False are not reserved keywords, but a global variable, which means you can do this
>>> True = 0 >>> True 0 >>> if not True: ... print '1' ... 1
So the following two In this case:
import timeit s1 = """ n = 1000000 while 1: n -= 1 if n <= 0: break """ s2 = """ n = 1000000 while True: n -= 1 if n <= 0: break """ print timeit.timeit(stmt=s1, number=100) print timeit.timeit(stmt=s2, number=100)
The operation result is as follows:
➜ python test6.py 5.18007302284 6.84624099731
Because every time when judging "while True", we must first find the value of True.
In python3.x, True becomes a keyword argument, so the above two situations are the same.
cProfile, cStringIO and cPickle
Extensions written using the C version are faster than the native ones. cPickle vs pickle is as follows:
import timeit s1 = """ import cPickle import pickle n = range(10000) cPickle.dumps(n) """ s2 = """ import cPickle import pickle n = range(10000) pickle.dumps(n) """ print timeit.timeit(stmt=s1, number=100) print timeit.timeit(stmt=s2, number=100)
The running results are as follows:
➜ python test6.py 0.182178974152 1.70917797089
Use the generator appropriately
Difference
Using () to get a generator object, the memory space required has nothing to do with the size of the list, so the efficiency will be higher .
import timeit s1 = """ [i for i in range (100000)] """ s2 = """ (i for i in range(100000)) """ print timeit.timeit(stmt=s1, number=1000) print timeit.timeit(stmt=s2, number=1000)
Result:
➜ python test6.py 5.44327497482 0.923446893692
But for situations where loop traversal is required: using iterators is not efficient, as follows:
import timeit s1 = """ ls = range(1000000) def yield_func(ls): for i in ls: yield i+1 for x in yield_func(ls): pass """ s2 = """ ls = range(1000000) def not_yield_func(ls): return [i+1 for i in ls] for x in not_yield_func(ls): pass """ print timeit.timeit(stmt=s1, number=10) print timeit.timeit(stmt=s2, number=10)
The result is as follows:
➜ python test6.py 1.03186702728 1.01472687721
So using a generator is a trade-off, for memory and speed. Consider the results.
xrange
在python2.x里xrange 是纯C实现的生成器,相对于range来说,它不会一次性计算出所有值在内存中。但它的限制是只能和整型一起工作:你不能使用long或者float。
import 语句的开销
import语句有时候为了限制它们的作用范围或者节省初始化时间,被卸载函数内部,虽然python的解释器不会重复import同一个模块不会出错,但重复导入会影响部分性能。有时候为了实现懒加载(即使用的时候再加载一个开销很大的模块),可以这么做:
email = None def parse_email(): global email if email is None: import email ... # 这样一来email模块仅会被引入一次,在parse_email()被第一次调用的时候。

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



VS Code can be used to write Python and provides many features that make it an ideal tool for developing Python applications. It allows users to: install Python extensions to get functions such as code completion, syntax highlighting, and debugging. Use the debugger to track code step by step, find and fix errors. Integrate Git for version control. Use code formatting tools to maintain code consistency. Use the Linting tool to spot potential problems ahead of time.

In VS Code, you can run the program in the terminal through the following steps: Prepare the code and open the integrated terminal to ensure that the code directory is consistent with the terminal working directory. Select the run command according to the programming language (such as Python's python your_file_name.py) to check whether it runs successfully and resolve errors. Use the debugger to improve debugging efficiency.

VS Code can run on Windows 8, but the experience may not be great. First make sure the system has been updated to the latest patch, then download the VS Code installation package that matches the system architecture and install it as prompted. After installation, be aware that some extensions may be incompatible with Windows 8 and need to look for alternative extensions or use newer Windows systems in a virtual machine. Install the necessary extensions to check whether they work properly. Although VS Code is feasible on Windows 8, it is recommended to upgrade to a newer Windows system for a better development experience and security.

VS Code extensions pose malicious risks, such as hiding malicious code, exploiting vulnerabilities, and masturbating as legitimate extensions. Methods to identify malicious extensions include: checking publishers, reading comments, checking code, and installing with caution. Security measures also include: security awareness, good habits, regular updates and antivirus software.

VS Code is the full name Visual Studio Code, which is a free and open source cross-platform code editor and development environment developed by Microsoft. It supports a wide range of programming languages and provides syntax highlighting, code automatic completion, code snippets and smart prompts to improve development efficiency. Through a rich extension ecosystem, users can add extensions to specific needs and languages, such as debuggers, code formatting tools, and Git integrations. VS Code also includes an intuitive debugger that helps quickly find and resolve bugs in your code.

Python excels in automation, scripting, and task management. 1) Automation: File backup is realized through standard libraries such as os and shutil. 2) Script writing: Use the psutil library to monitor system resources. 3) Task management: Use the schedule library to schedule tasks. Python's ease of use and rich library support makes it the preferred tool in these areas.

VS Code not only can run Python, but also provides powerful functions, including: automatically identifying Python files after installing Python extensions, providing functions such as code completion, syntax highlighting, and debugging. Relying on the installed Python environment, extensions act as bridge connection editing and Python environment. The debugging functions include setting breakpoints, step-by-step debugging, viewing variable values, and improving debugging efficiency. The integrated terminal supports running complex commands such as unit testing and package management. Supports extended configuration and enhances features such as code formatting, analysis and version control.

Yes, VS Code can run Python code. To run Python efficiently in VS Code, complete the following steps: Install the Python interpreter and configure environment variables. Install the Python extension in VS Code. Run Python code in VS Code's terminal via the command line. Use VS Code's debugging capabilities and code formatting to improve development efficiency. Adopt good programming habits and use performance analysis tools to optimize code performance.
