JavaScript custom types
In JavaScript, there are many modes for creating an object with custom properties and methods, which are introduced one by one below.
1. Create patterns directly. This is the simplest and most straightforward pattern. First create an object of reference type and then add custom properties and methods to it. The sample code is as follows:
1 var person = new Object();
2 person.name = "Sam";
3 person.age = 16;
4 person.speak = function(){
5 alert(this. name + "is " + this.age + "years old");
6 }
7 person.speak();
You can see that an object of type Object is created above, and then name and age are added to it Properties and a speak method. Although creating a pattern directly is simple, its disadvantage is obvious: when we need to create many identical objects, we have to write code repeatedly every time. In order to solve this problem, we can encapsulate the process of creating objects, so we have the following factory pattern.
2. Factory mode. Factory pattern is a commonly used design pattern in programming. It mainly encapsulates the process of creating objects. The sample code is as follows:
1 function createPerson(name, age){
2 var person = new Object() ;
3 person.name = name;
4 person.age = age;
5 person.speak = function(){
6 alert(this.name + "is " + this.age + "years old");
7 }
8 return person;
9 }
10 var person1 = createPerson("Sam", 16);
11 var person2 = createPerson("Jack", 18);
After using the factory pattern, create objects of the same type It becomes simple. But the factory pattern does not solve the problem of object identification, that is, we cannot determine the specific type of the object created. Developers who have experience in object-oriented programming all know that the creation of objects should be based on classes. Once you have a specific custom class, you can then create objects of that class. Fortunately, in JavaScript, we can simulate a class through the constructor pattern.
3. Constructor pattern. There is no difference between constructors and ordinary functions. Any ordinary function can be used as a constructor, as long as the new operator is used; any constructor can also be called as an ordinary function. But in JavaScript, there is a convention that the function name used as a constructor needs to have the first letter capitalized. The sample code is as follows:
1 function Person(name, age){
2 this.name = name;
3 this.age = age;
4 this.speak = function(){
5 alert(this.name + "is " + this.age + "years old");
6 }
7 }
8 var person1 = new Person("Sam", 16);
9 var person2 = new Person("Jack", 18);
You can see that inside the constructor, we use this to add properties and methods. So, what does this refer to? When we create a Person object, this refers to the created object. Now, we can identify the specific types of objects person1 and person2. After using alert(person1 instanceOf Person), you can find that the output value is true. But the constructor pattern also has its own shortcomings, that is, the methods declared within the constructor will be recreated every time a new object is created (in JavaScript, functions are also objects). In other words, the methods within the constructor are bound to the object, not to the class. The output of the code below can verify our inference.
1 alert(person1.speak == person2.speak); // false
A relatively simple way to solve this shortcoming is to put the function declaration outside the constructor, that is:
1 function Person( name, age){
2 this.name = name;
3 this.age = age;
4 this.speak = speak;
5 }
6 function speak(){
7 alert(this.name + "is " + this.age + "years old");
8 }
9 var person1 = new Person("Sam", 16);
10 var person2 = new Person("Jack", 18);
11 alert(person1. speak == person2.speak); // true
The problem is solved, but this method brings new problems. First, the function speak is declared in the global scope, but it can only be used in the Person constructor. There is a risk of misuse when placed in the global scope; secondly, if a custom type has many methods, Then you need to declare a lot of global functions, which will not only lead to pollution of the global scope, but also is not conducive to code encapsulation. So, is there any way to make a custom type method bound to a class without polluting the global scope? The answer is to use prototype pattern.
4. Prototype mode. After we declare a new function, the function (in JavaScript, functions are also objects) will have a prototype attribute. A prototype is an object that represents the public properties and methods owned by all objects created by this function. The sample code is as follows:
1 function Person(){}
2 Person.prototype.name="Sam";
3 Person.prototype.age=16;
4 Person.prototype.speak = function(){
5 alert(this.name + "is " + this.age + "years old");
6 }
7 var person1 = new Person();
8 person1.speak();
9 var person2 = new Person() ;
10 alert(person1.speak == person2.speak); // true
You can see that although the speak method is not declared in the constructor, the object person1 we created can still call the speak method. This is because JavaScript has A search rule, first search instance attributes and methods, and return if found; if not found, search again in prototype. The prototype pattern makes the method related to the class and does not pollute the global scope, but it also has its own shortcomings: First, all attributes are also related to the class, which means that all objects share one attribute, which is obviously unreasonable. ; Second, there is no way to pass initialization data to the constructor. The solution is simple, just use a mix of constructor pattern and prototype pattern.
5. Combination mode. The sample code is as follows:
1 function Person(name, age){
2 this.name = name;
3 this.age = age;
4 }
5 Person.prototype.speak = function(){
6 alert (this.name + "is " + this.age + "years old");
7 }
8 var person1 = new Person();
9 person1.speak();
10 var person2 = new Person();
11 alert(person1.speak == person2.speak); // true
It is not difficult to find that the combination mode meets all our needs, and it is also a mode that is currently widely used. Developers with experience in object-oriented programming may feel that it is a bit awkward to put the prototype declaration outside the constructor, so can it be put into the constructor? The answer is yes, just use dynamic combination mode.
6. Dynamic combination mode. The principle is to first determine whether a certain attribute or method in the prototype has been declared. If not, declare the entire prototype; otherwise, do nothing. The sample code is as follows:
1 function Person(name, age){
2 this.name = name;
3 this.age = age;
4 if (Person.prototype.speak == "undefined"){
5 Person.prototype.speak = function(){
6 alert(this.name + "is " + this.age + "years old");
7 }
8 }
9 }

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

How to use WebSocket and JavaScript to implement an online speech recognition system Introduction: With the continuous development of technology, speech recognition technology has become an important part of the field of artificial intelligence. The online speech recognition system based on WebSocket and JavaScript has the characteristics of low latency, real-time and cross-platform, and has become a widely used solution. This article will introduce how to use WebSocket and JavaScript to implement an online speech recognition system.

WebSocket and JavaScript: Key technologies for realizing real-time monitoring systems Introduction: With the rapid development of Internet technology, real-time monitoring systems have been widely used in various fields. One of the key technologies to achieve real-time monitoring is the combination of WebSocket and JavaScript. This article will introduce the application of WebSocket and JavaScript in real-time monitoring systems, give code examples, and explain their implementation principles in detail. 1. WebSocket technology

How to use WebSocket and JavaScript to implement an online reservation system. In today's digital era, more and more businesses and services need to provide online reservation functions. It is crucial to implement an efficient and real-time online reservation system. This article will introduce how to use WebSocket and JavaScript to implement an online reservation system, and provide specific code examples. 1. What is WebSocket? WebSocket is a full-duplex method on a single TCP connection.

Introduction to how to use JavaScript and WebSocket to implement a real-time online ordering system: With the popularity of the Internet and the advancement of technology, more and more restaurants have begun to provide online ordering services. In order to implement a real-time online ordering system, we can use JavaScript and WebSocket technology. WebSocket is a full-duplex communication protocol based on the TCP protocol, which can realize real-time two-way communication between the client and the server. In the real-time online ordering system, when the user selects dishes and places an order

JavaScript and WebSocket: Building an efficient real-time weather forecast system Introduction: Today, the accuracy of weather forecasts is of great significance to daily life and decision-making. As technology develops, we can provide more accurate and reliable weather forecasts by obtaining weather data in real time. In this article, we will learn how to use JavaScript and WebSocket technology to build an efficient real-time weather forecast system. This article will demonstrate the implementation process through specific code examples. We

JavaScript tutorial: How to get HTTP status code, specific code examples are required. Preface: In web development, data interaction with the server is often involved. When communicating with the server, we often need to obtain the returned HTTP status code to determine whether the operation is successful, and perform corresponding processing based on different status codes. This article will teach you how to use JavaScript to obtain HTTP status codes and provide some practical code examples. Using XMLHttpRequest

Introduction to the method of obtaining HTTP status code in JavaScript: In front-end development, we often need to deal with the interaction with the back-end interface, and HTTP status code is a very important part of it. Understanding and obtaining HTTP status codes helps us better handle the data returned by the interface. This article will introduce how to use JavaScript to obtain HTTP status codes and provide specific code examples. 1. What is HTTP status code? HTTP status code means that when the browser initiates a request to the server, the service

Usage: In JavaScript, the insertBefore() method is used to insert a new node in the DOM tree. This method requires two parameters: the new node to be inserted and the reference node (that is, the node where the new node will be inserted).
