Detailed explanation and example code of python queue
队列特性:先进先出(FIFO)——先进队列的元素先出队列。来源于我们生活中的队列(先排队的先办完事)。
Queue模块最常与threading模块一起构成生产-消费者模型,提供了一个适用于多线程编程的先进先出的数据结构,即队列。
该模块源码中包含5个类:
其中,Empty和Full是两个异常类,当队列的Queue.get(block=0)或者调用get_nowait()时,如果队列为空,则抛EmptyException异常。
同理,当队列的Queue.put(block=0)或者调用put_nowait()时,如果队列为达到maxsize,则抛FullException异常。
其他三个类:
Queue类:典型的队列模型,FIFO先入先出。 class Queue.Queue(maxsize) maxsize为队列长度,指明了队列中能存放的数据个数的上限。一旦达到上限,插入会导致阻 塞,
直到队列中的数据被消费掉。如果maxsize小于或者等于0,队列大小没有限制。
LifoQueue类:继承自Queue,类似于堆栈,先入后出。 class Queue.LifoQueue(maxsize)
PriorityQueue类:继承自Queue,优先级队列,级别越低越先出来。 class Queue.PriorityQueue(maxsize)
所以,只要搞定Queue类,就基本搞定Queue模块。
Queue类中常用的方法:
Queue.qsize() 返回队列的大小
Queue.empty() 如果队列为空,返回True,反之False
Queue.full() 如果队列满了,返回True,反之False
Queue.full 与 maxsize 大小对应
Queue.get([block[, timeout]]) 获取队列,timeout等待时间 ,调用队列对象的get()方法从队头删除并返回一个项目。可选参数为block,默认为True。如果队列为空且block为True,get()就使调用线程暂停,直至有项目可用。如果队列为空且block为False,队列将引发Empty异常。
Queue.get_nowait() 相当于Queue.get(False)
Queue.put(item)
写入队列,timeout等待时间 ,调用队列对象的put()方法在队尾插入一个项目。put()有两个参数,第一个item为必需的,为插入项目的值;第 二个block为可选参数,默认为1。如果队列当前为空且block为1,put()方法就使调用线程暂停,直到空出一个数据单元。如果block为0,put方法将引发Full异常。
Queue.put_nowait(item) 相当Queue.put(item, False)
Queue.task_done()
在完成一项工作之后,Queue.task_done()函数向任务已经完成的队列发送一个信号
Queue.join()
实际上意味着等到队列为空,再执行别的操作
一个小的练习实例:
#coding:utf-8 import random, threading, time import Queue ''' 实现了一个生产线程,用于往队列中添加随机数10个, 实现了一个消费线程,分别消耗奇数随机数和偶数随机数 ''' class producer(threading.Thread): def __init__(self,t_name,queue): threading.Thread.__init__(self,name=t_name) self.data = queue def run(self): for i in xrange(10): random_num = random.randint(1,99) print "%s : %s 生产了一个随机数\033[31;0m %d \033[0m放入队列中" % (time.ctime(),self.getName(),random_num) self.data.put(random_num) time.sleep(1) print "生产线程完成!!" class consumer(threading.Thread): def __init__(self,t_name,queue): threading.Thread.__init__(self,name=t_name) self.data = queue def run(self): while True: try: tmp_num = self.data.get(1,5) #定义超时时间5秒 if tmp_num%2 == 0: print "%s : %s 消耗了一个队列中的偶数随机数\033[31;0m %d \033[0m" % (time.ctime(),self.getName(),tmp_num) time.sleep(2) else: print "%s : %s 消耗了一个队列中的奇数随机数\033[31;0m %d \033[0m" % (time.ctime(), self.getName(), tmp_num) time.sleep(2) except: print "消费线程完成!!" #一旦到达超时时间5秒,会抛异常,break退出循环 break def main(): queue = Queue.Queue(0) pro = producer('Pro', queue) con = consumer('Con', queue) pro.start() con.start() pro.join() con.join() print 'All threads complete!!!' if __name__ == '__main__': main()
感谢阅读,希望能帮助到大家,谢谢大家对本站的支持!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



VS Code can run on Windows 8, but the experience may not be great. First make sure the system has been updated to the latest patch, then download the VS Code installation package that matches the system architecture and install it as prompted. After installation, be aware that some extensions may be incompatible with Windows 8 and need to look for alternative extensions or use newer Windows systems in a virtual machine. Install the necessary extensions to check whether they work properly. Although VS Code is feasible on Windows 8, it is recommended to upgrade to a newer Windows system for a better development experience and security.

In VS Code, you can run the program in the terminal through the following steps: Prepare the code and open the integrated terminal to ensure that the code directory is consistent with the terminal working directory. Select the run command according to the programming language (such as Python's python your_file_name.py) to check whether it runs successfully and resolve errors. Use the debugger to improve debugging efficiency.

VS Code can be used to write Python and provides many features that make it an ideal tool for developing Python applications. It allows users to: install Python extensions to get functions such as code completion, syntax highlighting, and debugging. Use the debugger to track code step by step, find and fix errors. Integrate Git for version control. Use code formatting tools to maintain code consistency. Use the Linting tool to spot potential problems ahead of time.

VS Code extensions pose malicious risks, such as hiding malicious code, exploiting vulnerabilities, and masturbating as legitimate extensions. Methods to identify malicious extensions include: checking publishers, reading comments, checking code, and installing with caution. Security measures also include: security awareness, good habits, regular updates and antivirus software.

VS Code is the full name Visual Studio Code, which is a free and open source cross-platform code editor and development environment developed by Microsoft. It supports a wide range of programming languages and provides syntax highlighting, code automatic completion, code snippets and smart prompts to improve development efficiency. Through a rich extension ecosystem, users can add extensions to specific needs and languages, such as debuggers, code formatting tools, and Git integrations. VS Code also includes an intuitive debugger that helps quickly find and resolve bugs in your code.

Python excels in automation, scripting, and task management. 1) Automation: File backup is realized through standard libraries such as os and shutil. 2) Script writing: Use the psutil library to monitor system resources. 3) Task management: Use the schedule library to schedule tasks. Python's ease of use and rich library support makes it the preferred tool in these areas.

Golang is more suitable for high concurrency tasks, while Python has more advantages in flexibility. 1.Golang efficiently handles concurrency through goroutine and channel. 2. Python relies on threading and asyncio, which is affected by GIL, but provides multiple concurrency methods. The choice should be based on specific needs.

Python is more suitable for beginners, with a smooth learning curve and concise syntax; JavaScript is suitable for front-end development, with a steep learning curve and flexible syntax. 1. Python syntax is intuitive and suitable for data science and back-end development. 2. JavaScript is flexible and widely used in front-end and server-side programming.
